【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個數(shù)是( 。
A.3
B.4
C.1
D.2
【答案】A
【解析】
首先連接BD,易證得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.
連接BD,
∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故①正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴②正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故④正確;
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF,
故③錯誤.
綜上所述,結(jié)論正確的是①②④.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形邊長都為1.建立適當?shù)钠矫嬷苯亲鴺讼,使點A(3,4)、C(4,2).
(1)判斷△ABC的形狀,并求圖中格點△ABC的面積;
(2)在x軸上有一點P,使得PA+PC最小,則PA+PC的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意實數(shù) , ,定義關(guān)于“ ”的一種運算如下: .例如: , .
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,∠B=70°,∠C=40°,DE//AB交BC于點E.若AD=3cm,BC=10cm,則CD的長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點C作CF平分∠DCE交DE于點F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)九年級學(xué)生課外體育活動的情況,從該年級學(xué)生中隨機抽取了4%的學(xué)生,對其參加的體育活動項目進行了調(diào)查,將調(diào)查的數(shù)據(jù)進行統(tǒng)計并繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.有下列結(jié)論:①被抽測學(xué)生中參加羽毛球項目的人數(shù)為30;②在本次調(diào)查中“其他”的扇形的圓心角的度數(shù)為36°;③估計全區(qū)九年級參加籃球項目的學(xué)生比參加足球項目的學(xué)生多20%;④全區(qū)九年級大約有1500名學(xué)生參加乒乓球項目.其中正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.
(1)如圖1,若AE、CD為△ABC的角平分線:
①求∠AFD的度數(shù);
②若AD=3,CE=2,求AC的長;
(2)如圖2,若∠EAC=∠DCA=30°,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,∠3+∠4=180°,要證∠1=∠2,請完善證明過程,并在括號內(nèi)填上相應(yīng)依據(jù):
∵AD∥BC(已知)
∴∠l=∠3( ),
∵∠3+∠4=180°(已知),
∴BE∥DF( ),
∴ = ( ).
∴∠1=∠2( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com