【題目】如圖,在△ABC 中,CDAB,EFAB,垂足分別為DF

1)若∠1=2,試說明DGBC

2)若CD 平分∠ACB,∠A=60°,求∠B的度數(shù).

【答案】1)證明見解析;(2)∠B=60°

【解析】

1)根據(jù)垂直于同一條直線的兩直線平行,先判定EFCD,根據(jù)兩直線平行同位角相等,得∠1=∠BCD;根據(jù)等量代換可得∠DCB=∠2,從而根據(jù)內(nèi)錯角相等,兩直線平行得證;
2)根據(jù)CDAB得出∠ADC的度數(shù),從而求出∠ACD的度數(shù),再根據(jù)CD平分∠ACB,進(jìn)而求出∠ACB的度數(shù),再根據(jù)三角形內(nèi)角和定理,可得∠B的度數(shù),.

1)∵CDABEFAB

∴∠EFB=90°,∠CDB=90°

∴∠EFB=CDB

EFCD

∴∠1=BCD

∵∠1=2

∴∠2=BCD

DGBC

2)∵CDAB,

∴∠CDA=90°

∵∠A=60°,

∴∠ACD=30°,

CD平分∠ACB,

∴∠ACD=ACB,

∴∠ACB=60°,

∵∠A=60°,

∴∠B=180°-ACB-∠A=60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系 xOy 中的點 A,給出如下定義:若存在點 B(不與點 A 重合,且直線 AB 不與 坐標(biāo)軸平行或重合),過點 A 作直線 mx 軸,過點 B 作直線 ny 軸,直線 m,n 相交于點 C.當(dāng)線段 AC,BC 的長度相等時,稱點 B 為點 A 的等距點,稱三角形 ABC 的面積為點 A 的等距面積. 例如:如 圖,點 A2,1),點 B5,4),因為 AC= BC=3,所以 B 為點 A 的等距點,此時點 A 的等距面積為

(1) A 的坐標(biāo)是(0,1),在點 B12,3),B2 (1, 1) , B3 (3, 2) 中,點A的等距點為

(2) A 的坐標(biāo)是 (3,1) ,點 A 的等距點 B 在第三象限,

若點 B 的坐標(biāo)是 (5 1) ,求此時點 A 的等距面積;

若點 A 的等距面積不小于 2,請直接寫出點 B 的橫坐標(biāo) t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】筐白菜,以每筐千克為標(biāo)準(zhǔn),超過或不足的分別用正、負(fù)來表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差單位:千克

筐 數(shù)

(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計超過或不足多少千克?

(2)若白菜每千克售價元,則出售這筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸交于點,與y軸交于點,把直線沿x軸的負(fù)方向平移6個單位得到直線,直線x軸交于點C,與y軸交于點D,連接BC

如圖,分別求出直線的函數(shù)解析式;

如果點P是第一象限內(nèi)直線上一點,當(dāng)四邊形DCBP是平行四邊形時,求點P的坐標(biāo);

如圖,如果點E是線段OC的中點,,交直線于點F,在y軸的正半軸上能否找到一點M,使是等腰三角形?如果能,請求出所有符合條件的點M的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.

(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,﹣1).

(1)試作出△ABCC為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1B1C;

(2)以原點O為對稱中心,再畫出與△ABC關(guān)于原點O對稱的△A2B2C2,并寫出點C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=15,AC=13,AD⊥BC于D,AD=12,⊙O是△ABC的外接圓,則⊙O的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與正比例函數(shù)的圖像相交于點A(2,),與軸相交于點B

(1)求的值;

(2)在軸上存在點C,使得AOC的面積等于AOB的面積,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB于點D,AC=4,BC=3,DB=,

(1)求CD、AD的長

(2)判斷ABC的形狀,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案