【題目】如圖1,在中,,,AB=4,點(diǎn)是邊上動點(diǎn)(點(diǎn)不與點(diǎn)、重合),過點(diǎn)作,交邊于點(diǎn).
(1)求的大。
(2)若把沿著直線翻折得到,設(shè)
① 如圖2,當(dāng)點(diǎn)落在斜邊上時,求的值;
② 如圖3,當(dāng)點(diǎn)落在外部時,與相交于點(diǎn),如果,寫出與的函數(shù)關(guān)系式以及定義域.
【答案】(1) ;(2) ①x=1,② ,定義域
【解析】
(1)根據(jù)正弦的定義求出∠B=30°,根據(jù)平行線的性質(zhì)解答;
(2)根據(jù)翻轉(zhuǎn)變換的性質(zhì),等邊三角形的判定定理得到△AQP為等邊三角形,根據(jù)等邊三角形的性質(zhì)得到AQ=QP,證明AQ=QC,計算即可;
(3)作QG⊥AB于G,RH⊥AB于H,根據(jù)正弦的定義用x表示出QG,證明RE=RB,根據(jù)等腰三角形的性質(zhì)得到EH= y,根據(jù)正切的定義計算即可.
解:(1) 在Rt△ABC中,
∵ ,AB=4,
∴
∵
∴
(2) ① 如圖2,當(dāng)點(diǎn)落在斜邊上時;
由翻折得
∴
∵
∴
∴
∵
∴
是等邊三角形
即x=1.
② 如圖3,當(dāng)點(diǎn)落在外部,
作QG⊥AB于G,RH⊥AB于H,
∵QR∥AB,
∴QG=RH,
在Rt△AQG中,QG=AQ×sinA
由翻折的性質(zhì)可知,∠PRP=∠CRQ=30°,
∵QR∥AB,
∴∠REB=∠PRQ,
∴∠REB=∠B,
∴RE=RB,
∵RH⊥AB,
在Rt△ERH中,
∴
整理得,y=3x,
則y與x的函數(shù)關(guān)系式為y=3x(0<x<1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù):
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常?梢哉业浇鉀Q問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點(diǎn)X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過點(diǎn)A作AZ∥A'Z',交BD于點(diǎn)Z.第四步,過點(diǎn)Z作ZY∥AC,交BC于點(diǎn)Y,再過點(diǎn)Y作YX∥ZA,交AC于點(diǎn)X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常常可以找到解決問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點(diǎn)X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過點(diǎn)A作AZ∥A'Z',交BD于點(diǎn)Z.第四步,過點(diǎn)Z作ZY∥AC,交BC于點(diǎn)Y,再過點(diǎn)Y作YX∥ZA,交AC于點(diǎn)X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
任務(wù):(1)請根據(jù)上面的操作步驟及部分證明過程,判斷四邊形AXYZ的形狀,并加以證明;
(2)請再仔細(xì)閱讀上面的操作步驟,在(1)的基礎(chǔ)上完成AX=BY=XY的證明過程;
(3)上述解決問題的過程中,通過作平行線把四邊形BA'Z'Y'放大得到四邊形BAZY,從而確定了點(diǎn)Z,Y的位置,這里運(yùn)用了下面一種圖形的變化是 .
A.平移 B.旋轉(zhuǎn) C.軸對稱 D.位似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊,一次,溫州氣象局測得臺風(fēng)中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴(yán)重影響的區(qū)域,試問:
(1)臺風(fēng)中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風(fēng)影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風(fēng)嚴(yán)重影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為1的正方形ABCD中,P是對角線AC上的一個動點(diǎn)(與點(diǎn)A. C不重合),過點(diǎn)P作PE⊥PB,PE交射線DC于點(diǎn)E,過點(diǎn)E作EF⊥AC,垂足為點(diǎn)F,當(dāng)點(diǎn)E落在線段CD上時(如圖),
(1)求證:PB=PE;
(2)在點(diǎn)P的運(yùn)動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC的中點(diǎn),將△ADE繞點(diǎn)A按順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°)得到△AD'E′,連接BD′、CE′,如圖1.
(1)求證:BD′=CE';
(2)如圖2,當(dāng)α=60°時,設(shè)AB與D′E′交于點(diǎn)F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(4,0),C(0,3)三點(diǎn),D為直線BC上方拋物線上一動點(diǎn),DE⊥BC于E.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,求線段DE長度的最大值;
(3)如圖2,設(shè)AB的中點(diǎn)為F,連接CD,CF,是否存在點(diǎn)D,使得△CDE中有一個角與∠CFO相等?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖,不寫作法,保留作圖痕跡
(1)如圖1,若△ABC與△DEF關(guān)于直線l對稱,請作出直線l;
(2)如圖2,在矩形ABCD中,已知點(diǎn)B,F分別在AD和AB上,請在邊BC上作出點(diǎn)G,在邊CD作出點(diǎn)H,使得四邊形FEGH的周長最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com