【題目】如圖,已知∠A=∠D=90°EF在線段BC上,DEAF交于點O,且AB=CD,BE=CF.

求證:(1Rt△ABF≌Rt△DCE;(2OE=OF .

【答案】1)見解析,

2)見解析.

【解析】

1)由于△ABF△DCE是直角三角形,根據(jù)直角三角形全等的判定的方法即可證明;

2)先根據(jù)三角形全等的性質得出∠AFB=∠DEC,再根據(jù)等腰三角形的性質得出結論.

證明:(1∵BE=CF,∴ BE+EF=CF+EF; BF=CE.

∵∠A=∠D=90°,∴△ABF△DCE都為直角三角形

Rt△ABFRt△DCE,;

∴Rt△ABF≌Rt△DCE(HL).

2∵ Rt△ABF≌Rt△DCE(已證) .

∴ ∠AFB=∠DEC .

∴ OE=OF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,以為圓心,長為半徑畫弧,分別交、兩點,連接,則除外,圖中是等腰三角形的還有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11·漳州)(滿分8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:

1)請將以上兩幅統(tǒng)計圖補充完整;

2)若一般優(yōu)秀均被視為達標成績,則該校被抽取的學生中有_ ▲ 人達標;

3)若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(,0)、B兩點,與y軸交于C點,其對稱軸為直線x=1.

(1)直接寫出拋物線的解析式

(2)把線段AC沿x軸向右平移,設平移后A、C的對應點分別為A′、C′,當C′落在拋物線上時,求A′、C′的坐標;

(3)除(2)中的點A′、C′外,在x軸和拋物線上是否還分別存在點E、F,使得以A、C、E、F為頂點的四邊形為平行四邊形,若存在,求出E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠為了檢驗甲、乙兩車間生產的同一款新產品的合格情況(尺寸范圍為的產品為合格),隨機各抽取了20個樣品進行檢測,過程如下:

收集數(shù)據(jù)(單位:):

甲車間:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.

乙車間:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.

整理數(shù)據(jù):

分析數(shù)據(jù):

車間

平均數(shù)

眾數(shù)

中位數(shù)

方差

甲車間

180

185

180

43.1

乙車間

180

180

180

22.6

應用數(shù)據(jù):

(1)計算甲車間樣品的合格率.

(2)估計乙車間生產的1000個該款新產品中合格產品有多少個?

(3)結合上述數(shù)據(jù)信息,請判斷哪個車間生產的新產品更好,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內作菱形,下列作法中錯誤的是(

A. (A) B. (B) C. (C) D. (D)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設和諧家園,準備將一塊周長為76米的長方形空地,設計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經市場預測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預計花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:

(21)+(13)(25)(+28

226÷(﹣2)×

③先化簡再求值:﹣a2b+3ab2a2b)﹣22ab2a2b),其中 a=1,b=2

2)解下列方程

x1(3 x1)

查看答案和解析>>

同步練習冊答案