【題目】問題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數量關系.
解法探究:小明同學通過思考,得到了如下的解決方法.
延長FD到點G,使DG=BE,連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,從而可得結論.
(1)請先寫出小明得出的結論,并在小明的解決方法的提示下,寫出所得結論的理由.
解:線段BE、EF、FD之間的數量關系是: .
理由:延長FD到點G,使DG=BE,連結AG.(以下過程請同學們完整解答)
(2)拓展延伸:
如圖②,在四邊形ABCD中,AB=AD,若∠B+∠D=180°,E、F分別是BC、CD上的點.且∠EAF=∠BAD,則(1)中的結論是否仍然成立?若成立,請再把結論寫一寫;若不成立,請直接寫出你認為成立的結論.
【答案】(1)EF=BE+FD,理由見解析;(2)結論EF=BE+FD仍然成立,理由見解析.
【解析】
(1)延長FD到點G.使DG=BE.連結AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
(2)延長FD到點G.使DG=BE.連結AG,求出∠B=∠ADG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題.
證明:(1)EF=BE+FD;
理由:延長FD到點G,使DG=BE,連結AG.
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,BE=DG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD∠EAF=∠EAF,
即∠EAF=∠GAF,
在△AEF和△AGF中,,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+FD;
(2)結論EF=BE+FD仍然成立;
理由:如圖②,延長FD到點G.使DG=BE.連結AG,
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,BE=DG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD∠EAF=∠EAF,
即∠EAF=∠GAF,
在△AEF和△AGF中,,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+FD.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在同一條直線上,M,N分別為BE,CD的中點.
(1)求證:△ABE≌ACD;
(2)判斷△AMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=900,AC=BC,AE平分∠BAC與BC交于點E, DE⊥AB于點D,若AB=8cm,則△DEB的周長為( )
A.4cmB.6cmC.8cmD.10cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,平行四邊形如圖放置,點、的坐標分別是、,將此平行四邊形繞點順時針旋轉,得到平行四邊形.
如拋物線經過點、、,求此拋物線的解析式;
在情況下,點是第一象限內拋物線上的一動點,問:當點在何處時,的面積最大?最大面積是多少?并求出此時的坐標;
在的情況下,若為拋物線上一動點,為軸上的一動點,點坐標為,當、、、構成以作為一邊的平行四邊形時,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為豐富學生的校園文化生活,振興中學舉辦了一次學生才藝比賽,三個年級都有男、女各一名選手進入決賽,初一年級選手編號為男號、女號,初二年級選手編號為男號、女號,初三年級選手編號為男號、女號.比賽規(guī)則是男、女各一名選手組成搭檔展示才藝.
用列舉法說明所有可能出現(xiàn)搭檔的結果;
求同一年級男、女選手組成搭檔的概率;
求高年級男選手與低年級女選手組成搭檔的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是輸入一個的值,計算函數的值的程序框圖:
(1)當輸入的值為100時,輸出的的值為多少?
(2)當輸入一個整數時,輸出的的值為-500,則輸入的的值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習了利用圖象法來求一元二次方程的近似根的知識后進行了嘗試:在直角坐標系中作出二次函數的圖象,由圖象可知,方程有兩個根,一個在和之間,另一個在和之間.利用計算器進行探索:由下表知,方程的一個近似根是( )
A. -4.1 B. -4.2 C. -4.3 D. -4.4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com