【題目】已知,拋物線y=x2+(2m-1)x-2m(-<m≤),直線l的解析式為y=(k-1)x+2m-k+2.
(1)若拋物線與y軸交點的縱坐標(biāo)為-3,試求拋物線的頂點坐標(biāo);
(2)試證明:拋物線與直線l必有兩個交點;
(3)若拋物線經(jīng)過點(x0,-4),且對于任意實數(shù)x,不等式x2+(2m-1)x-2m≥-4都成立; 當(dāng)k-2≤x≤k時,批物線的最小值為2k+1. 求直線l的解析式.
【答案】(1)y=x2+2x-3,頂點(-1,-4);(2)詳見解析;(3)y =-3 x +7或y =(1+2)x +3+2
【解析】
(1)由拋物線與y軸交點的縱坐標(biāo)為-3,求得m的值,再把拋物線的解析式進(jìn)行配方即可得到拋物線的頂點坐標(biāo);
(2)根據(jù)拋物線與直線的方程聯(lián)立,證明其方程有兩個不同的根即△>0即可;
(3)依題意可知y最小值=-4,求出m=,此時拋物線的對稱軸為直線 x=-1,再分三種情況結(jié)合函數(shù)的圖象求出k的值即可得出結(jié)論.
(1)∵-2m=-3,
∴2m=3,
∴拋物線:y= x2+(2m-1)x-2m =x2+2x-3=( x +1)2-4,
∴頂點坐標(biāo)為:(-1,-4)
(2)拋物線:y=x2+(2m-1)x-2m
直線:y=(k-1)x+2m-k+2.
x2+(2m-k)x-4m+k-2=0
△=(2m-k)2-4(-4m+k-2)= (2m-k)2+16m-4k+8
=(2m-k)2+4(2m-k)+8m+4
=(2m-k+2)2+8m+4
∵m>-, (2m-k+2)2≥0
∴△>0,拋物線與直線l必有兩個交點.
(3)依題意可知y最小值=-4
即:=-4,m=或m=-
∵-<m≤
∴m=,此時拋物線的對稱軸為直線 x=-1
①當(dāng)k≤-1時,拋物線在k-2≤x≤k上,圖象下降,y隨x增大而減小.
此時y最小值= k2+2k-3
∴ k2+2k-3=2k+1
解得:k1=2>-1(舍去),k2=-2
②當(dāng)k-2<-1<k,即<-1<k <1時,拋物線在k-2≤x≤k上, y最小值=-4
∴ 2k+1=-4
∴解得:k=-<-1 (舍去)·
③當(dāng)k-2≥-1,即k≥1時,拋物線在k-2≤x≤k上,圖象上升,隨增大而增大,
此時y最小值= (k-2)2+2 (k-2)-3
(k-2)2+2 (k-2)-3=2k+1,
解得:k1=2+2 ,k2=2-2<1 (舍去),
綜上所述,直線:y =-3 x +7或y =(1+2)x +3+2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”
譯文:“今有只雀、只燕,分別聚焦而且用衡器稱之,聚在一起的雀重,燕輕.經(jīng)一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤.問雀、燕每只各重多少斤?”
請列方程組解答上面的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③。其中正確的結(jié)論是____________.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:雙曲線經(jīng)過點A(2,3),射線AB經(jīng)過點B(0,2),將射線AB繞A按逆時針方向旋轉(zhuǎn)45°,交雙曲線于點C,則點C的坐標(biāo)的為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B 的坐標(biāo)為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點D、E,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對稱,當(dāng)點F恰好落在線段OA上時,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過第一象限內(nèi)的一點A(n,4),過點A作AB⊥x軸于點B,且△AOB的面積為2.
(1)求m和n的值;
(2)若一次函數(shù)y=kx+2的圖象經(jīng)過點A,并且與x軸相交于點C,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關(guān)于y軸對稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB=8cm,BC=6cm.點P從點A出發(fā),沿AC方向勻速運(yùn)動,速度為2cm/s,同時,點Q從點B出發(fā),沿BA方向勻速運(yùn)動,速度為2cm/s.過點P作PM⊥AD于點M,連接PQ,設(shè)運(yùn)動時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,點Q在線段AC的中垂線上;
(2)寫出四邊形PQAM的面積為S(cm2)與時間t的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請說明理由;
(4)當(dāng)t為何值時,△APQ與△ADC相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com