【題目】已知關于x的一元二次方程mx2+2mx+m40;

1)若該方程沒有實數(shù)根,求m的取值范圍.

2)怎樣平移函數(shù)ymx2+2mx+m4的圖象,可以得到函數(shù)ymx2的圖象?

【答案】1m0;(2)向右平移1個單位長度,再向上平移4個單位長度.

【解析】

(1)根據(jù)關于x的一元二次方程mx2+2mx+m40沒有實數(shù)根,可以得到關于m的不等式組,從而可以求得m的取值范圍;

2)先將函數(shù)ymx2+2mx+m4化為頂點式,再根據(jù)平移的性質可以得到函數(shù)ymx2

1)∵關于x的一元二次方程mx2+2mx+m40沒有實數(shù)根,

,

解得,m0

m的取值范圍是m0;

2)∵函數(shù)ymx2+2mx+m4m(x+1)24,

∴函數(shù)ymx2+2mx+m4的圖象向右平移一個單位長度,在向上平移4個單位長度即可得到函數(shù)ymx2的圖象.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線分別交軸于A、C,點P是該直線與反比例函數(shù)在第一象限內的一個交點,PB⊥軸于B,且SABP=9

1)求證:△AOC∽△ABP

2)求點P的坐標;

3)設點R與點P在同一個反比例函數(shù)的圖象上,且點R在直線PB的右側,作RT⊥軸于T,當△BRT△AOC相似時,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某面粉廠生產某品牌的面粉按質量分5個檔次,生產第一檔(最低檔次)面粉,每天能生產55噸,每噸利潤1000.生產面粉的質量每提高一個檔次,每噸利潤會增加200元,但每天的產量會減少5.

1)若生產第檔次的面粉每天的總利潤為元(其中為正整數(shù),且),求生產哪個檔次的面粉時,每天的利潤最大,每天的最大利潤是多少元?

2)若生產第檔次的面粉一天的總利潤為60000元,求該面粉的質量檔次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學在一次用頻率估計概率的試驗中,統(tǒng)計了某一結果出現(xiàn)的頻率,給出的 統(tǒng)計圖如圖所示,則符合這一結果的試驗可能是

A.擲一枚硬幣,出現(xiàn)正面朝上的概率

B.擲一枚硬幣,出現(xiàn)反面朝上的概率

C.擲一枚骰子,出現(xiàn) 點的概率

D.從只有顏色不同的兩個紅球和一個黃球中,隨機取出一個球是黃球的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】, ,,,是斜邊的中點,以點為頂點作,射線分別交邊、于點、.

特例

1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;

操作探究:

2)將(1)中的從圖1的位置開始繞點按逆時針方向旋轉,得到,如圖2,當射線,分別交邊于點、時,求的值;

拓展延伸:

3)如圖3,中,,,點是斜邊的中點,以點為頂點作,射線、分別交邊、的延長線于點,則的值為 .(用含、的代數(shù)式表示,直接回答即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由兩個可以自由轉動的轉盤、每個轉盤被分成如圖所示的幾個扇形、游戲者同時轉動兩個轉盤,如果一個轉盤轉出了紅色,另一轉盤轉出了藍色,游戲者就配成了紫色下列說法正確的是(  )

A. 兩個轉盤轉出藍色的概率一樣大

B. 如果A轉盤轉出了藍色,那么B轉盤轉出藍色的可能性變小了

C. 先轉動A 轉盤再轉動B 轉盤和同時轉動兩個轉盤,游戲者配成紫色的概率不同

D. 游戲者配成紫色的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是反比例函數(shù)x軸上方的圖象,點Cy軸正半軸上的一點,過點C軸分別交這兩個圖象與點A和點B,PQx軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于(

A.20B.15C.10D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步練習冊答案