【題目】某學(xué)校計(jì)劃購(gòu)買若干臺(tái)電腦,現(xiàn)從兩家商場(chǎng)了解到同一型號(hào)電腦每臺(tái)報(bào)價(jià)均為4000元,并且多買都有一定的優(yōu)惠.甲商場(chǎng)的優(yōu)惠條件是:第一臺(tái)按原價(jià)收費(fèi),其余每臺(tái)優(yōu)惠25%;乙商場(chǎng)的優(yōu)惠條件是:每臺(tái)優(yōu)惠20%

1)設(shè)該學(xué)校所買的電腦臺(tái)數(shù)是x臺(tái),選擇甲商場(chǎng)時(shí),所需費(fèi)用為元,選擇乙商場(chǎng)時(shí),所需費(fèi)用為元,請(qǐng)分別寫出, x之間的關(guān)系式;

2)該學(xué)校如何根據(jù)所買電腦的臺(tái)數(shù)選擇到哪間商場(chǎng)購(gòu)買,所需費(fèi)用較少?

【答案】1y1=3000x+1000; y2=80%×4000x=3200x;(2)當(dāng)所購(gòu)買電腦超過(guò)5臺(tái)時(shí),到甲商場(chǎng)購(gòu)買所需費(fèi)用較少;當(dāng)所購(gòu)買電腦少于5臺(tái)時(shí),到乙商場(chǎng)買所需費(fèi)用較少;即當(dāng)所購(gòu)買電腦為5臺(tái)時(shí),兩家商場(chǎng)的所需費(fèi)用相同.

【解析】試題分析:(1)商場(chǎng)的收費(fèi)等于電腦的臺(tái)數(shù)乘以每臺(tái)的單價(jià),則甲商場(chǎng)的收費(fèi)y=4000+x-1×4000×1-25%),乙商場(chǎng)的收費(fèi)y=x4000×1-20%),然后整理即可;

2)學(xué)校選擇哪家商場(chǎng)購(gòu)買更優(yōu)惠就是比較y的大小,當(dāng)yy時(shí),學(xué)校選擇乙家商場(chǎng)購(gòu)買更優(yōu)惠,即3000x+10003200x;當(dāng)y=y時(shí),學(xué)校選擇甲、乙兩家商場(chǎng)購(gòu)買一樣優(yōu)惠,即3000x+1000=3200x;當(dāng)yy時(shí),學(xué)校選擇甲家商場(chǎng)購(gòu)買更優(yōu)惠,即3000x+10003200x,然后分別解不等式和方程即可得解.

試題解析:(1y1=4000+125%)(x1×4000=3000x+1000

y2=80%×4000x=3200x

2)當(dāng)y1y2時(shí),有3000x+10003200x解得,x5

即當(dāng)所購(gòu)買電腦超過(guò)5臺(tái)時(shí),到甲商場(chǎng)購(gòu)買所需費(fèi)用較少;

當(dāng)y1y2時(shí),有3000x+10003200x,解得x5;

即當(dāng)所購(gòu)買電腦少于5臺(tái)時(shí),到乙商場(chǎng)買所需費(fèi)用較少;

當(dāng)y1=y2時(shí),即3000x+1000=3200x, 解得x=5.

即當(dāng)所購(gòu)買電腦為5臺(tái)時(shí),兩家商場(chǎng)的所需費(fèi)用相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,、、在同一直線上,,且

1)求證:;

2)請(qǐng)?zhí)骄?/span>、的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 m,n 相交于 O,所夾的銳角是 53°,點(diǎn) P,Q 分別是直線 m,n上的點(diǎn),將直線 m,n 按照下面的程序操作,能使兩直線平行的是(

A. 將直線 m 以點(diǎn) O 為中心,順時(shí)針旋轉(zhuǎn) 53° B. 將直線 n 以點(diǎn) Q 為中心,順時(shí)針旋轉(zhuǎn) 53°

C. 將直線 m 以點(diǎn) P 為中心,順時(shí)針旋轉(zhuǎn) 53° D. 將直線 m 以點(diǎn) P 為中心,順時(shí)針旋轉(zhuǎn) 127°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王勇和李明兩位同學(xué)在學(xué)習(xí)概率時(shí),做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了30次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:

朝上的點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

2

5

6

4

10

3

(1)分別計(jì)算這30次實(shí)驗(yàn)中“3點(diǎn)朝上的頻率和“5點(diǎn)朝上的頻率;

(2)王勇說(shuō):根據(jù)以上實(shí)驗(yàn)可以得出結(jié)論:由于5點(diǎn)朝上的頻率最大,所以一次實(shí)驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大;李明說(shuō):如果投擲300次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是30.試分別說(shuō)明王勇和李明的說(shuō)法正確嗎?并簡(jiǎn)述理由;

(3)現(xiàn)王勇和李明各投擲一枚骰子,請(qǐng)用列表或畫樹(shù)狀圖的方法求出兩枚骰子朝上的點(diǎn)數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向ABC作等腰RtABE和等腰RtACF,過(guò)點(diǎn)E,F作射線GA的垂線,垂足分別為P,Q

1)求證:EPA≌△AGB

2)試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖2.若連接EFGA的延長(zhǎng)線于H,由(2)中的結(jié)論你能判斷EHFH的大小關(guān)系嗎?并說(shuō)明理由:

4)在(3)的條件下,若BC10,AG12.請(qǐng)直接寫出SAEF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠BAC90°,ABAC,ADBC于點(diǎn)D.過(guò)射線AD上一點(diǎn)MBM的垂線,交直線AC于點(diǎn)N

1)如圖1,點(diǎn)MAD上,若∠N15°,BC2,則線段AM的長(zhǎng)為   ;

2)如圖2,點(diǎn)MAD上,求證:BMNM

3)若點(diǎn)MAD的延長(zhǎng)線上,則ABAM,AN之間有何數(shù)量關(guān)系?直接寫出你的結(jié)論,不證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

同步練習(xí)冊(cè)答案