【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DFBD

1)求證:△AEB≌△CFD;

2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

【答案】(1)、證明過程見解析;(2)、90°

【解析】

試題(1)、根據(jù)平行四邊形的性質(zhì)和已知條件證明即可;(2)、由菱形的性質(zhì)可得:BE=DE,因?yàn)?/span>∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,問題得解.

試題解析:(1)、四邊形ABCD是平行四邊形, ∴∠A=∠C,AD=BC,AB=CD

點(diǎn)E、F分別是AD、BC的中點(diǎn), ∴AE=ADFC=BC∴AE=CF

∴△AEB≌△CFDSAS).

(2)、四邊形EBFD是菱形, ∴BE=DE∴∠EBD=∠EDB∵AE=DE, ∴BE=AE

∴∠A=∠ABE∵∠EBD+∠EDB+∠A+∠ABE=180°, ∴∠ABD=∠ABE+∠EBD=×180°=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,為邊上的中線,點(diǎn)上,以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),點(diǎn)上,且,連接

1)依題意補(bǔ)全圖形;

2)求證:;

3)若平分,則滿足的等量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中, 對(duì)角線ACBD相交于點(diǎn)O. E、F是對(duì)角線AC上的兩個(gè)不同點(diǎn),當(dāng)E、F兩點(diǎn)滿足下列條件時(shí),四邊形DEBF不一定是平行四邊形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)DE分別在AB、AC上,AEBD,∠B=∠CED,AE3,DE,則線段CE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

2019925日,被譽(yù)為世界新七大奇跡之首的北京大興國際機(jī)場正式投運(yùn).某校組織初二年級(jí)同學(xué)到距學(xué)校30公里的北京大興國際機(jī)場進(jìn)行參觀.同學(xué)們乘坐大巴車前往,張老師因?qū)W校有事晚出發(fā)了5分鐘,開私家車沿相同路線行進(jìn),結(jié)果和同學(xué)們同時(shí)到達(dá).已知私家車的速度是大巴車速度的1.2倍.求大巴車的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探索:任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長和面積分別是已知矩形周長和面積的一半?(完成下列空格)

(1)當(dāng)已知矩形A的邊長分別為61時(shí),小亮同學(xué)是這樣研究的:

設(shè)所求矩形的兩邊分別是xy,由題意得方程組:,消去y化簡得:2x2﹣7x+6=0,

∵△=49﹣48>0,

x1=_____,x2=_______,

∴滿足要求的矩形B存在.

(2)如果已知矩形A的邊長分別為21,請(qǐng)你仿照小亮的方法研究是否存在滿足要求的矩形B.

(3)如果矩形A的邊長為mn,請(qǐng)你研究滿足什么條件時(shí),矩形B存在?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC中,∠ACB=90°,ACBC

(1)如圖1,點(diǎn)DBC的延長線上,連AD,過BBEADE,交AC于點(diǎn)F.求證:ADBF;

(2)如圖2,點(diǎn)D在線段BC上,連AD,過AAEAD,且AEAD,連BEACF,連DE,問BDCF有何數(shù)量關(guān)系,并加以證明;

(3)如圖3,點(diǎn)DCB延長線上,AEADAEAD,連接BE、AC的延長線交BE于點(diǎn)M,若AC=3MC,請(qǐng)直接寫出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案