【題目】 拋物線(xiàn)與軸交于點(diǎn)(在的左側(cè)),與軸交于點(diǎn).
⑴求直線(xiàn)的解析式;
⑵拋物線(xiàn)的對(duì)稱(chēng)軸上存在點(diǎn),使,利用圖求點(diǎn)的坐標(biāo);
⑶點(diǎn)在軸右側(cè)的拋物線(xiàn)上,利用圖比較與的大小,并說(shuō)明理由.
【答案】(1)y=﹣x+3;(2)(1,2+2)或(1,﹣2﹣2),(3)當(dāng)Q點(diǎn)橫坐標(biāo)為5時(shí),∠OCA=∠OCQ;當(dāng)Q點(diǎn)橫坐標(biāo)大于5時(shí),則∠OCQ逐漸變小,故∠OCA>∠OCQ;當(dāng)Q點(diǎn)橫坐標(biāo)小于5且大于0時(shí),則∠OCQ逐漸變大,故∠OCA<∠OCQ..
【解析】
試題分析:.(1)由拋物線(xiàn)解析式可求得B、C的坐標(biāo),利用待定系數(shù)法可求得直線(xiàn)BC的解析式;
(2)由直線(xiàn)BC解析式可知∠APB=∠ABC=45°,設(shè)拋物線(xiàn)對(duì)稱(chēng)軸交直線(xiàn)BC于點(diǎn)D,交x軸于點(diǎn)E,結(jié)合二次函數(shù)的對(duì)稱(chēng)性可求得PD=BD,在Rt△BDE中可求得BD,則可求得PE的長(zhǎng),可求得P點(diǎn)坐標(biāo);
(3)設(shè)Q(x,﹣x2+2x+3),當(dāng)∠OCQ=∠OCA時(shí),利用兩角的正切值相等可得到關(guān)于x的方程,可求得Q點(diǎn)的橫坐標(biāo),再結(jié)合圖形可比較兩角的大。
試題解析:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,
∴B(3,0),C(0,3),∴可設(shè)直線(xiàn)BC的解析式為y=kx+3,
把B點(diǎn)坐標(biāo)代入可得3k+3=0,解得k=﹣1,∴直線(xiàn)BC解析式為y=﹣x+3;
(2)∵OB=OC,∴∠ABC=45°,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴拋物線(xiàn)對(duì)稱(chēng)軸為x=1,
設(shè)拋物線(xiàn)對(duì)稱(chēng)軸交直線(xiàn)BC于點(diǎn)D,交x軸于點(diǎn)E,當(dāng)點(diǎn)P在x軸上方時(shí),如圖1,
∵∠APB=∠ABC=45°,且PA=PB,
∴∠PBA=,∠DPB=∠APB=22.5°,
∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,
在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,
∴PE=2+2,∴P(1,2+2);
當(dāng)點(diǎn)P在x軸下方時(shí),由對(duì)稱(chēng)性可知P點(diǎn)坐標(biāo)為(1,﹣2﹣2);
綜上可知P點(diǎn)坐標(biāo)為(1,2+2)或(1,﹣2﹣2);
(3)設(shè)Q(x,﹣x2+2x+3),當(dāng)點(diǎn)Q在x軸下方時(shí),如圖2,過(guò)Q作QF⊥y軸于點(diǎn)F,
當(dāng)∠OCA=∠OCQ時(shí),則△QEC∽△AOC,
∴,即,解得x=0(舍去)或x=5,
∴當(dāng)Q點(diǎn)橫坐標(biāo)為5時(shí),∠OCA=∠OCQ;
當(dāng)Q點(diǎn)橫坐標(biāo)大于5時(shí),則∠OCQ逐漸變小,故∠OCA>∠OCQ;
當(dāng)Q點(diǎn)橫坐標(biāo)小于5且大于0時(shí),則∠OCQ逐漸變大,故∠OCA<∠OCQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊的邊長(zhǎng)為,是上的動(dòng)點(diǎn),過(guò)作于點(diǎn),過(guò)作于點(diǎn),過(guò)作于點(diǎn).當(dāng)與重合時(shí),的長(zhǎng)是()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC⊥BC,垂足為C,AC=4,BC=3 ,將線(xiàn)段AC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到線(xiàn)段AD,連接DC,DB.
(1)線(xiàn)段DC=;
(2)求線(xiàn)段DB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一種水果的進(jìn)價(jià)為每千克3.8元,在正常的銷(xiāo)售過(guò)程中,估計(jì)有5%的水果損耗,為保證此次銷(xiāo)售不虧本,商家要把水果的單價(jià)至少定為_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分8分)
為營(yíng)造書(shū)香家庭,周末小亮和姐姐一起從家出發(fā)去圖書(shū)館借書(shū),走了6分鐘忘帶借書(shū)證,小亮立即騎路邊共享單車(chē)返回家中取借書(shū)證,姐姐以原來(lái)的速度繼續(xù)向前行走,小亮取到借書(shū)證后騎單車(chē)原路原速前往圖書(shū)館,小亮追上姐姐后用單車(chē)帶著姐姐一起前往圖書(shū)館.已知單車(chē)的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時(shí)間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問(wèn)題:
⑴小亮在家停留了 分鐘.
⑵求小亮騎單車(chē)從家出發(fā)去圖書(shū)館時(shí)距家的路程y(米)與出發(fā)時(shí)間x(分鐘)之間的函數(shù)關(guān)系式.
⑶若小亮和姐姐到圖書(shū)館的實(shí)際時(shí)間為m分鐘,原計(jì)劃步行到達(dá)圖書(shū)館的時(shí)間為n分鐘,則n-m= 分鐘.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com