【題目】一個多邊形的內(nèi)角和是外角和的2倍,則這個多邊形的邊數(shù)為 .

【答案】6
【解析】解:∵多邊形的外角和是360度,多邊形的內(nèi)角和是外角和的2倍,
則內(nèi)角和是720度,
720÷180+2=6,
∴這個多邊形是六邊形.
所以答案是:6.
【考點精析】通過靈活運用多邊形內(nèi)角與外角,掌握多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)5,4,3,4,9的中位數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 拋物線軸交于點的左側(cè)),與軸交于點.

求直線的解析式;

拋物線的對稱軸上存在點,使,利用圖求點的坐標;

軸右側(cè)的拋物線上,利用圖比較的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關系如圖中線段l2所示(不考慮其它因素).
(1)求原有蓄水量y1(萬m3)與時間x(天)的函數(shù)關系式,并求當x=20時的水庫總蓄水量.
(2)求當0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數(shù)關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示為某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖,觀察圖中所提供的信息解答下列問題:
(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車中途停了多長時間?
(3)當16≤t≤30時,求S與t的函數(shù)關系式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句中正確的是( 。

A. 斜邊和一銳角對應相等的兩個直角三角形全等

B. 有兩邊對應相等的兩個直角三角形全等

C. 有兩個角對應相等的兩個直角三角形全等

D. 有一直角邊和一銳角對應相等的兩個直角三角形全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB= cm,AD=24cm,BC=26cm,∠B=90°,動點P從A開始沿AD邊向D以1cm/s的速度運動,動點Q從點C開始沿CB以3cm/s的速度向點B運動.P、Q同時出發(fā),當其中一點到達頂點時,另一點也隨之停止運動,設運動時間為ts,問:
(1)t=時,四邊形PQCD是平行四邊形.
(2)是否存在一個t值,使PQ把梯形ABCD分成面積相等的兩部分?若存在請求出t的值.
(3)當t為何值時,四邊形PQCD為等腰梯形.
(4)連接DQ,是否存在t值使△CDQ為等腰三角形?若存在請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系內(nèi),點A(n,n﹣1)一定不在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設x1 , x2是方程x2+5x﹣3=0的兩個根,則x12+x22的值是( 。
A.19
B.25
C.31
D.30

查看答案和解析>>

同步練習冊答案