【題目】如圖,在矩形ABCD中,AB=6,BC=4,動點Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對折得到△CQN,延長QN交直線CD于點M.
(1)求證:MC=MQ
(2)當BQ=1時,求DM的長;
(3)過點D作DE⊥CQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.
【答案】(1)見解析;(2)2.5;(3)或2
【解析】
(1)由矩形的性質(zhì)得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折疊的性質(zhì)得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,證出MC=MQ.
(2)設DM=x,則MQ=MC=6+x,MN=5+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.
(3)分兩種情況:①當點M在CD延長線上時,由(1)得:∠MCQ=∠CQM,證出∠FDM=∠F,得出MD=MF,過M作MH⊥DF于H,則DF=2DH,證明△MHD∽△CED,得出,求出MD=CD=1,MC=MQ=7,由勾股定理得出MN即可解決問題.
②當點M在CD邊上時,同①得出BQ=2即可.
(1)證明:∵四邊形ABCD是矩形,
∴DC∥AB
即∠MCQ=∠CQB,
∵△BQC沿CQ所在的直線對折得到△CQN,
∴∠CQN=∠CQB,
即∠MCQ=∠MQC,
∴MC=MQ.
(2)∵四邊形ABCD是矩形,△BQC沿CQ所在的直線對折得到△CQN,
∴∠CNM=∠B=90°,
設DM=x,則MQ=MC=6+x,MN=5+x,
在Rt△CNM中,MB2=BN2+MN2,
即(x+6)2=42+(x+5)2,
解得:x=,
∴DM=,
∴DM的長2.5.
(3)解:分兩種情況:
①當點M在CD延長線上時,如圖所示:
由(1)得∠MCQ=∠MQC,
∵DE⊥CQ,
∴∠CDE=∠F,
又∵∠CDE=∠FDM,
∴∠FDM=∠F,
∴MD=MF.
過M點作MH⊥DF于H,則DF=2DH,
又,
∴,
∵DE⊥CQMH⊥DF,
∴∠MHD=∠DEC=90°,
∴△MHD∽△DEC
∴ ,
∴DM=1,MC=MQ=7,
∴MN=
∴BQ=NQ=
②當點M在CD邊上時,如圖所示,類似可求得BQ=2.
綜上所述,BQ的長為或2.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知OA=10cm,OB=5cm,點P從點O開始沿OA邊向點A以2cm/s的速度移動;點Q從點B開始沿BO邊向點O以1cm/s的速度移動.如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤5),
(1)用含t的代數(shù)式表示:線段PO= cm;OQ= cm.
(2)當t為何值時,四邊形PABQ的面積為19cm2.
(3)當△POQ與△AOB相似時,求出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板如圖①放置,其中,斜邊,把三角板繞點順時針旋轉(zhuǎn),得到,如圖②,這時與相交于點,與相交于點.
(1)求的度數(shù);
(2)求線段的長;
(3)若把繞著點順時針再旋轉(zhuǎn),得.這時點在的內(nèi)部、外部,還是邊上?請說明理由,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 在平面直角坐標系中的位置如圖所示,其中每 個小正方形的邊長為 1 個單位長度.
(1)畫出△ABC 關(guān)于原點 O 的中心對稱圖形△A1B1C1,并寫出點 A1 的坐標;
(2)將△ABC 繞點 C 順時針旋轉(zhuǎn) 90°得到△A2B2C,畫出△A2B2C,求在旋轉(zhuǎn)過程中,點 A 所經(jīng)過的路徑長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程M為ax2+bx+c=0、N為cx2+bx+a=0(a≠c),則下列結(jié)論:①如果5是方程M的一個根,那么是方程N的一個根;②如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;③如果方程M與方程N有一個相同的根,那么這個根必是x=1.其中正確的結(jié)論是( 。
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形DEFG是△ABC的內(nèi)接正方形,D、G分別在AB、AC上,E、F在BC上,AH是△ABC的高,已知BC=20,AH=16,求正方形DEFG的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)用配方法將y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;
(3)寫出當x為何值時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點D是AB的中點,DE⊥BC,垂足為點E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程kx2﹣3x+1=0有實數(shù)根.
(1)求k的取值范圍;
(2)若該方程有兩個實數(shù)根,分別為x1和x2,當x1+x2+x1x2=4時,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com