【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫(xiě)出DE、BF、BP三者之間的數(shù)量關(guān)系.
【答案】解:(1)DE=BC。
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;
(3)補(bǔ)全圖形如圖,DE、BF、BP三者之間的數(shù)量關(guān)系為BF﹣BP=DE。
【解析】試題分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BC,DE=BC;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;
(3)與(2)的證明方法一樣得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,則BF﹣BP=BC,所以BF﹣BP=DE.
解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵點(diǎn)D是AB的中點(diǎn),
∴DB=DC,
∴△DCB為等邊三角形,
∵DE⊥BC,
∴DE=BC;
故答案為DE=BC.
(2)BF+BP=DE.理由如下:
∵線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC﹣BP,
∴BF+BP=BC,
∵DE=BC,
∴BC=DE,
∴BF+BP=DE;
(3)如圖,
與(2)一樣可證明△DCP≌△DBF,
∴CP=BF,
而CP=BC+BP,
∴BF﹣BP=BC,
∴BF﹣BP=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三線段,能組成等腰三角形的是( )
A. 1,1,2 B. 2,2,5 C. 3,3,5 D. 3,4,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有一個(gè)角是60°的菱形繞它的中心旋轉(zhuǎn),使它與原來(lái)的菱形重合,那么旋轉(zhuǎn)的角度至少是
A.90° B.180° C.270° D.360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與x軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,﹣3),且BO=CO
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為M,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,將點(diǎn)A行向右平移3個(gè)單位長(zhǎng)度,再向下平移5個(gè)單位長(zhǎng)度,得到 ;將點(diǎn)B先向下平移5個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度,得到 ;則 與 相距( )
A.4個(gè)單位長(zhǎng)度
B.5個(gè)單位長(zhǎng)度
C.6個(gè)單位長(zhǎng)度
D.7個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算中正確的是( )
A.aa2=a2
B.2aa=2a2
C.(2a2)2=2a4
D.6a8÷3a2=3a4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com