【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中間的小正方形(即陰影部分)面積可表示為 .
(2)觀察圖2,請你寫出三個代數(shù)式(m+n)2 , (m﹣n)2 , mn之間的等量關(guān)系式: .
(3)根據(jù)(2)中的結(jié)論,若x+y=﹣6,xy=2.75,則x﹣y= .
(4)有許多代數(shù)恒等式可以用圖形的面積來表示.如圖3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2 . 試畫出一個幾何圖形,使它的面積能表示為(m+n)(m+2n)=m2+3mn+2n2 .
【答案】
(1)(m﹣n)2
(2)(m+n)2=(m﹣n)2+4mn
(3)±5
(4)解:如圖所示:
【解析】(1)圖②中陰影部分的邊長都等于小長方形的長減去小長方形的寬,即m﹣n, 由圖可知,陰影部分的四個角都是直角,故陰影部分是正方形,其邊長為m﹣n,
則其面積為(m﹣n)2 ,
所以答案是:(m﹣n)2
2)解:大正方形的面積邊長的平方,即(m+n)2 , 或小正方形面積加4個小長方形的面積,即4mn+(m﹣n)2 ,
故可得:(m+n)2=(m﹣n)2+4mn,
所以答案是:(m+n)2=(m﹣n)2+4mn
3)解:由(2)知(x﹣y)2=(x+y)2﹣4xy=36﹣4×2.75=25,
∴x﹣y=±5,
所以答案是:±5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和N,作直線MN交AB于點D,交BC于點E,連接CD,下列結(jié)論錯誤的是( )
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的AB邊在x軸上,且AB=3,AD=2,經(jīng)過點C的直線y=x﹣2與x軸、y軸分別交于點E,F(xiàn).
(1)求矩形ABCD的頂點A,B,C,D的坐標(biāo);
(2)求證:△OEF≌△BEC;
(3)P為直線y=x﹣2上一點,若S△POE=5,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x-3)2圖像上的兩個不同的點A(3,a)和B(x,b),則a和b的大小關(guān)系( )
A. a≤bB. a>bC. a<bD. a≥b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com