【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DEx軸于點E,連接BD

1)求經(jīng)過A,BC三點的拋物線的函數(shù)表達(dá)式;

2)點P是線段BD上一點,當(dāng)PEPC時,求點P的坐標(biāo).

【答案】(1)y=﹣x2+2x+3;(2)點P的坐標(biāo)為(2,2).

【解析】

1)利用待定系數(shù)法求出過AB,C三點的拋物線的函數(shù)表達(dá)式;

2)連接PCPE,利用公式求出頂點D的坐標(biāo),利用待定系數(shù)法求出直線BD的解析式,設(shè)出點P的坐標(biāo)為(x,﹣2x+6),利用勾股定理表示出PC2PE2,根據(jù)題意列出方程,解方程求出x的值,計算求出點P的坐標(biāo).

解:(1)∵拋物線y=﹣x2+bx+c經(jīng)過A(﹣10),B3,0)兩點,

,解得,

∴所求的拋物線的函數(shù)表達(dá)式為y=﹣x2+2x+3;

2)如圖,連接PCPE

拋物線的對稱軸為x1

當(dāng)x1時,y4

∴點D的坐標(biāo)為(1,4).

設(shè)直線BD的解析式為ykx+b

,

解得

∴直線BD的解析式為:y2x+6,

設(shè)點P的坐標(biāo)為(x,﹣2x+6),又C0,3),E1,0),

PC2x2+3+2x62,PE2=(x12+(﹣2x+62

PCPE,

x2+3+2x62=(x12+(﹣2x+62,

解得,x2

y=﹣2×2+62,

∴點P的坐標(biāo)為(22).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報社為了解市民對社會主義核心價值觀的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果為A非常了解”、“B了解”、“C基本了解三個等級,并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下列問題:

(1)本次調(diào)查的人數(shù)為   ;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100萬人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對社會主義核心價值觀達(dá)到A非常了解的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(m,2)B(3,n)兩點關(guān)于原點O對稱,反比例函數(shù)y的圖象經(jīng)過點A

(1)求反比例函數(shù)的解析式并判斷點B是否在這個反比例函數(shù)的圖象上;

(2)P(x1,y1)也在這個反比例函數(shù)的圖象上,﹣3x1mx10,請直接寫出y1的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB2OA4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進(jìn)行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關(guān)系式為yax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當(dāng)科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進(jìn)行防輻射處理,設(shè)修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.

(1)當(dāng)科研所到宿舍樓的距離x3km時,防輻射費y____萬元,a____b____;

(2)m90時,求當(dāng)科研所到宿舍樓的距離為多少km時,配套工程費最少?

(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+c與直線yx交于(1,1)和(33)兩點,現(xiàn)有以下結(jié)論:b24c0;3b+c+60;當(dāng)x2+bx+c時,x2;當(dāng)1x3時,x2+b1x+c0,其中正確的序號是( 。

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末沿同一條路線登山,甲、乙兩人距地面的高度y(米)與登山時間x(分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題

1)甲登山的速度是每分鐘  米;乙在A地提速時,甲距地面的高度為  米;

2)若乙提速后,乙的速度是甲登山速度的3倍;

求乙登山全過程中,登山時距地面的高度y(米)與登山時間x(分鐘)之間的函數(shù)解析式;

乙計劃在他提速后5分鐘內(nèi)追上甲,請判斷乙的計劃能實現(xiàn)嗎?并說明理由;

3)當(dāng)x為多少時,甲、乙兩人距地面的高度差為80米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PAPB、PC,若有PA2PB2+PC2則稱點P為△ABC關(guān)于點A的勾股點.

1)如圖2,在4×5的網(wǎng)格中,每個小正方形的長均為1,點A、B、C、DE、FG均在小正方形的頂點上,則點D是△ABC關(guān)于點   的勾股點;在點E、FG三點中只有點   是△ABC關(guān)于點A的勾股點.

2)如圖3,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,

①求證:CECD;②若DADE,∠AEC120°,求∠ADE的度數(shù).

3)矩形ABCD中,AB5,BC6,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,

①若△ADE是等腰三角形,求AE的長;②直接寫出AE+BE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

同步練習(xí)冊答案