【題目】在一次數(shù)學(xué)課上,李老師出示一道開放題,讓同學(xué)們依據(jù)已知條件寫出正確結(jié)論,具體如下:如圖,直線與雙曲線相交于,兩點,過點分別作軸和軸的垂線,垂足分別為,,連接,,直線軸和軸分別交于點,.若點坐標(biāo),請寫出正確結(jié)論.聰明的強強很快寫出了四個結(jié)論,其中不正確的結(jié)論是(

A.B.

C.D.

【答案】D

【解析】

連接AO,BO,利用待定系數(shù)法求出一次函數(shù)和反比例函數(shù)解析式,再對各選項進行判斷即可得出答案.

如圖,連接AO,BO,將的坐標(biāo)代入,可得b=2,

∴直線解析式為,雙曲線解析式為,

則點B2,4),由反比例函數(shù)的對稱性可知AE=BF=4OE=OF=2,

易得OC=OD=2,則有:

A、,故正確;

B、

,本選項正確;

C 易證AF=BE,則在在中,

,本選項正確;

D、由勾股定理得,

=13,本選項錯誤;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究,

(1)如圖①,在矩形ABCD中,AB2AD,PCD邊上的中點,試比較∠APB和∠ADB的大小關(guān)系,并說明理由;

(2)如圖②,在正方形ABCD中,PCD上任意一點,試問當(dāng)P點位于何處時∠APB最大?并說明理由;

問題解決

(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC60°,OA400米,AB200米,問在OD邊上是否存在一點P,使得∠APB最大,若存在,請求出此時OP的長和∠APB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龍人文教用品商店欲購進、兩種筆記本,用160元購進的種筆記本與用240元購進的種筆記本數(shù)量相同,每本種筆記本的進價比每本種筆記本的進價貴10元.

(1)兩種筆記本每本的進價分別為多少元?

(2)若該商店準(zhǔn)備購進、兩種筆記本共100本,且購買這兩種筆記本的總價不超過2650元,則至少購進種筆記本多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為⊙的直徑,為圓上的兩點,,弦相交于點,

1)求證:

2)若,,求⊙的半徑;

3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點交⊙, 兩點(點在線段上),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB、AC分別為⊙O的直徑和弦,D為的中點,DE⊥ACEDE=6,AC=16

1)求證:DE⊙O的切線.

2)求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀新知

一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個非零常數(shù),這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().

即:在數(shù)列,,,,.(為正整數(shù))中,若,,則數(shù)列,,,.(為正整數(shù))叫做等比數(shù)列.其中叫數(shù)列的首項,叫第二項,,叫第項,叫做數(shù)列的公比.

例如:數(shù)列1,2,4,816,是等比數(shù)列,公比

計算:求等比數(shù)列13,,,的和.

解:令,則

因此.所以

學(xué)以致用

1)選擇題:下列數(shù)列屬于等比數(shù)列的是(

A1,23,4,5 B2,6,18,21,63

C56,2814,7 D.-11,22,-33,44,-55

2)填空題:已知數(shù)列,,是公比為4的等比數(shù)列,若它的首項,則它的第等于_________

3)解答題:求等比數(shù)列15,,2021項的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過,兩點,該拋物線的頂點為

1)求拋物線和直線的解析式;

2)設(shè)點是直線下方拋物線上的一動點,求面積的最大值,并求面積最大時,點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.

1)如圖1,A為圓E上一點,請用直尺(不帶刻度)和圓規(guī)作出圓內(nèi)接正方形;

2)我們知道,三角形具有性質(zhì),三邊的垂直平分線相交于同一點,三條角平分線相交于一點,三條中線相交于一點,事實上,三角形還具有性質(zhì):三條高交于同一點,請運用上述性質(zhì),只用直尺(不帶刻度)作圖:

①如圖2,在□ABCD中,ECD的中點,作BC的中點F;

②圖3,在由小正方形組成的網(wǎng)格中,的頂點都在小正方形的頂點上,作ABC的高AH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC是等腰直角三角形,∠B=90°,點B的坐標(biāo)為(1,2).反比例函數(shù)的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)A,C兩點.

1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

2)直接寫出不等式組0<ax+b≤的解集.

查看答案和解析>>

同步練習(xí)冊答案