【題目】龍人文教用品商店欲購(gòu)進(jìn)、兩種筆記本,用160元購(gòu)進(jìn)的種筆記本與用240元購(gòu)進(jìn)的種筆記本數(shù)量相同,每本種筆記本的進(jìn)價(jià)比每本種筆記本的進(jìn)價(jià)貴10元.

(1)兩種筆記本每本的進(jìn)價(jià)分別為多少元?

(2)若該商店準(zhǔn)備購(gòu)進(jìn)、兩種筆記本共100本,且購(gòu)買(mǎi)這兩種筆記本的總價(jià)不超過(guò)2650元,則至少購(gòu)進(jìn)種筆記本多少本?

【答案】(1)、兩種筆記本每本的進(jìn)價(jià)分別為 20 元、30 元;(2)至少購(gòu)進(jìn) 種筆記本 35

【解析】

1)設(shè)種筆記本每本的進(jìn)價(jià)為元,則每本種筆記本的進(jìn)價(jià)為(x+10)元,根據(jù)用160元購(gòu)進(jìn)的種筆記本與用240元購(gòu)進(jìn)的種筆記本數(shù)量相同即可列出方程,解方程即可求出結(jié)果;

2)設(shè)購(gòu)進(jìn)種筆記本本,根據(jù)購(gòu)進(jìn)的A種筆記本的價(jià)錢(qián)+購(gòu)進(jìn)的B種筆記本的價(jià)錢(qián)≤2650即可列出關(guān)于a的不等式,解不等式即可求出結(jié)果.

1)解:設(shè)種筆記本每本的進(jìn)價(jià)為元,根據(jù)題意,得:

,解得:

經(jīng)檢驗(yàn):是原分式方程的解,

答:、兩種筆記本每本的進(jìn)價(jià)分別為20 元、30元.

2)解:設(shè)購(gòu)進(jìn)種筆記本本,根據(jù)題意,得:,解得:

∴至少購(gòu)進(jìn)種筆記本35本.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點(diǎn)MN分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MFAD,FNDC,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某飛機(jī)模型的機(jī)翼形狀如圖所示,其中ABDC,BAE=90°,根據(jù)圖中的數(shù)據(jù)求CD的長(zhǎng)?(精確到1cm)(參考數(shù)據(jù):sin37°0.60,cos37°0.80,tan37°0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,,,是對(duì)角線,于點(diǎn),于點(diǎn)

(1)如圖1,求證:

(2)如圖2,當(dāng)時(shí),連接,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中的四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于四邊形面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=B=C=D=90°,點(diǎn)E在線段AB上以lcms的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),與此同時(shí)點(diǎn)F在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間均為ts

1)若點(diǎn)F的運(yùn)動(dòng)速度與點(diǎn)E的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí):

①判斷BEFADE是否全等?并說(shuō)明理由;

②求∠EDF的度數(shù).

2)如圖2,將圖1中的長(zhǎng)方形ABCD改為梯形ABCD,且∠A=B=70°AB=7cm,AD=BC=5cm,其他條件不變.設(shè)點(diǎn)F的運(yùn)動(dòng)速度為xcm/s.是否存在x的值,使得BEFADE全等?若存在,直接寫(xiě)出相應(yīng)的xt的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空:把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由,

如圖,已知ABC中,E、F分別是ABAC上的兩點(diǎn),且EFBC,DEF上一點(diǎn),且BD=CDED=FD,請(qǐng)說(shuō)明BE=CF

解:∵BD=CD(已知)

∴∠DBC=DCB______

EFBC(已知)

∴∠EDB=DBC

FDC=____________

∴∠EDB=FDC(等量代換)

EBDFCD中,

∴△EBD≌△FCD______

BE=CF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)8×10的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的頂點(diǎn)均在格點(diǎn)上

(1)畫(huà)出ABC關(guān)于直線OM對(duì)稱的圖形.

(2)畫(huà)出ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形.

(3)△組成的圖形__________ 軸對(duì)稱圖形. (填不是”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與雙曲線交于A點(diǎn),且點(diǎn)A的橫坐標(biāo)是4.雙曲線上有一動(dòng)點(diǎn)Cm,n, .過(guò)點(diǎn)A軸垂線,垂足為B,過(guò)點(diǎn)C軸垂線,垂足為D,聯(lián)結(jié)OC

1)求的值;

2)設(shè)的重合部分的面積為S,求Sm的函數(shù)關(guān)系;

3)聯(lián)結(jié)AC,當(dāng)?shù)冢?/span>2)問(wèn)中S的值為1時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備開(kāi)展陽(yáng)光體育活動(dòng),決定開(kāi)展以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過(guò)獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于多少度?

(4)若該學(xué)校有2500人,請(qǐng)你估計(jì)該學(xué)校選擇羽毛球項(xiàng)目的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案