【題目】如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個就能推出△ABC是等腰三角形的是__.
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.
【答案】②③④
【解析】解:應(yīng)添加的條件是②③④;
證明:②當(dāng)∠BAD=∠CAD時,∵AD是∠BAC的平分線,且AD是BC邊上的高,則△ABD≌△ACD,∴△BAC是等腰三角形;
③延長DB至E,使BE=AB;延長DC至F,使CF=AC;連接AE、AF.
∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC,∴△AEF是等腰三角形,∴∠E=∠F.
∵AB=BE,∴∠ABC=2∠E.
同理,得∠ACB=2∠F,∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根據(jù)勾股定理,得:
AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD).
∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;
∴①+②得:2AB=2AC,∴AB=AC,∴△ABC是等腰三角形.
故答案為:②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種圓環(huán)(如圖),它的外圓直徑是8厘米,環(huán)寬1厘米.
①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為___________厘米;
②如果用x個這樣的圓環(huán)相扣并拉緊,長度為y厘米,則y與x之間的關(guān)系式是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E是BD上的一點(diǎn),∠BAE=∠BCE,∠AED=∠CED,點(diǎn)G是BC、AE延長線的交點(diǎn),AG與CD相交于點(diǎn)F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=2EF時,判斷FG與EF有何數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活中,有人喜歡把傳送的便條折成“”形狀,折疊過程按圖①、②、③、④的順序進(jìn)行(其中陰影部分表示紙條的反面):
如果由信紙折成的長方形紙條(圖①)長為2 6 厘米,分別回答下列問題:
(1)如果長方形紙條的寬為2厘米,并且開始折疊時起點(diǎn)M與點(diǎn)A的距離為3厘米,那么在圖②中,BE=_____厘米; 在圖④中,BM=______厘米.
(2)如果長方形紙條的寬為x厘米,現(xiàn)不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點(diǎn)P的長度相等,即最終圖形是軸對稱圖形,試求在開始折疊時起點(diǎn)M與點(diǎn)A的距離(結(jié)果用x表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠C=90°,tanA= ,D是AC上一點(diǎn),∠CBD=∠A,則sin∠ABD=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“二廣”高速在益陽境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運(yùn)輸.“益安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“益安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“益安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請你一一寫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑,亞光初中為了了解學(xué)校學(xué)生的閱讀情況,組織調(diào)查組對全校三個年級共1500名學(xué)生進(jìn)行了抽樣調(diào)查,抽取的樣本容量為300.已知該校有初一學(xué)生600名,初二學(xué)生500名,初三學(xué)生400名.
(1)為使調(diào)查的結(jié)果更加準(zhǔn)確地反映全校的總體情況,應(yīng)分別在初一年級隨機(jī)抽取人;在初二年級隨機(jī)抽取人;在初三年級隨機(jī)抽取人.(請直接填空)
(2)調(diào)查組對本校學(xué)生課外閱讀量的統(tǒng)計(jì)結(jié)果分別用扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖表示如下請根據(jù)上統(tǒng)計(jì)圖,計(jì)算樣本中各類閱讀量的人數(shù),并補(bǔ)全頻數(shù)分布直方圖.
(3)根據(jù)(2)的調(diào)查結(jié)果,從該校中隨機(jī)抽取一名學(xué)生,他最大可能的閱讀量是多少本?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
已知:如圖,與互補(bǔ),,
求證:
證明:與互補(bǔ)
即,(已知)
// ( )
.( )
又,(已知)
,即.(等式的性質(zhì))
// (內(nèi)錯角相等,兩直線平行)
.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com