在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.

(1)求證:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面積.

(1)證明見試題解析;(2)4.5.

解析試題分析:(1)利用D是BC邊上的中點(diǎn),DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定,就可以證明題目結(jié)論;
(2)過(guò)點(diǎn)A作AM⊥BC,垂足是M,利用等腰三角形性質(zhì)求出DM,利用平行線性質(zhì)定理,求出AM,從而求出△ABC的面積,再利用相似三角形的性質(zhì)就可以求出三角形FCD的面積.
試題解析:(1)∵D是BC邊上的中點(diǎn),DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∴△BDE≌△EDC,∴∠B=∠DCE,∵AD=AC,∴∠ADC=∠ACB,∴△ABC∽△FCD;
(2)過(guò)點(diǎn)A作AM⊥BC,垂足是M,∵△ABC∽△FCD,BC=2CD,∴,,
∵DE⊥BC,∴D是BC邊上的中點(diǎn),∴BD=DC,∵BC=8,∴DC=4,∵AD=AC,AM⊥DC,∴DM=MC=2,∴BM=4+2=6,
∵DE⊥BC,AM⊥DC,∴DE∥AM,∴,∴,,∴SABC=BC×AM=,∵,∴

考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.全等三角形的性質(zhì);4.等腰三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△中,平分∠,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在一個(gè)邊長(zhǎng)為a(單位:cm)的正方形ABCD中.

(1)如圖1,如果N是AD中點(diǎn),F(xiàn)為AB中點(diǎn),連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE: EF的值;
(2)如圖2,如果點(diǎn)E、M分別是線段AC、CD上的動(dòng)點(diǎn),假設(shè)點(diǎn)E從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0),連結(jié)DE并延長(zhǎng)交正方形的邊于點(diǎn)F,過(guò)點(diǎn)M作MN⊥DF于H,交AD于N.判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說(shuō)明理由. (4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△和△中,,為線段上一點(diǎn),且
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

提出問(wèn)題

如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________;
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.

(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.

(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為     ;
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為     
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案