【題目】已知∠AOB.求作:∠AOB的平分線.(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法),這種尺規(guī)作圖得到角平分線的依據(jù)是______.

【答案】作圖見解析;三條邊對應(yīng)相等的兩個三角形全等,全等三角形對應(yīng)角相等.

【解析】

①以點O為圓心,以適當長為半徑作弧交OA、OBCD;②分別以點C、D為圓心,以大于CD長為半徑作弧,兩弧相交于點E;③作射線OE,OE即是∠AOB的平分線;連結(jié)CE,DE,根據(jù)SSS可證OCEODE,可得∠COE=DOE,問題得解.

解:如圖,射線OE即為所求:

連結(jié)CE,DE

由作圖可知:OC=OD,CE=DE,

OE=OE

OCEODESSS),

∴∠COE=DOE,即OE為∠AOB的平分線,

∴這種尺規(guī)作圖得到角平分線的依據(jù)是:三條邊對應(yīng)相等的兩個三角形全等,全等三角形對應(yīng)角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC,垂足為DAD=CD,點EAD上,DE=BD,M、N分別是ABCE的中點.

1)求證:ADB≌△CDE;

2)求MDN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出)

學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進行研究.

(初步思考)

我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DFBC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角三種情況進行探究.

(深入探究)

第一種情況:當∠B是直角時,△ABC≌△DEF

1)如圖,在△ABC△DEF,AC=DF,BC=EF∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當∠B是鈍角時,△ABC≌△DEF

2)如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF

第三種情況:當∠B是銳角時,△ABC△DEF不一定全等.

3)在△ABC△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖中作出△DEF,使△DEF△ABC不全等.(不寫作法,保留作圖痕跡)

4∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC△DEF中,AC=DFBC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,有點A(20),B(0,3)C(0,2),且△AOB與△OCD全等.請直接寫出點D的坐標________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線l1與直線l2平行,且它們之間的距離為3,A,B是直線l1上的兩個定點,C,D是直線l2上的兩個動點(點C在點D的左側(cè)),AB=CD=6,連接AC、BD、BC,將ABC沿BC折疊得到A1BC.(如圖1)

(1)當A1D重合時(如圖2),四邊形ABDC是什么特殊四邊形,為什么?

(2)當A1D不重合時,連接A1D,則A1 DBC(不需證明),此時若以A1,B,C,D為頂點的四邊形為矩形,且矩形的邊長分別為a,b,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強學生的環(huán)保意識,某校組織了一次全校2000名學生都參加的環(huán)保知識考試,考題共10題.考試結(jié)束后,學校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次抽查的樣本容量是   ;在扇形統(tǒng)計圖中,m=   ,n=   ,“答對8所對應(yīng)扇形的圓心角為   度;

(2)將條形統(tǒng)計圖補充完整;

(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,計劃圍一個面積為50 m2的長方形場地,一邊靠舊墻(墻長為10 m),另外三邊用籬笆圍成,并且它的長與寬之比為52.討論方案時,小英說:我們不可能圍成滿足要求的長方形場地.小軍說:面積和長寬比例是確定的,肯定可以圍得出來.請你判斷誰的說法正確,為什么?

查看答案和解析>>

同步練習冊答案