【題目】四張質地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.
(1)求隨機抽取一張卡片,恰好得到數字2的概率;
(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數關系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若a、b、c是正數,下列各式,從左到右的變形不能用如圖驗證的是( 。
A. (b+c)2=b2+2bc+c2
B. a(b+c)=ab+ac
C. (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
D. a2+2ab=a(a+2b)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點A在△ECD的斜邊DE上
(1)求證:AE2+AD2=2AC2;
(2)如圖2,若AE=2,AC=2,點F是AD的中點,直接寫出CF的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(提出問題)(1)如圖1,已知AB∥CD,證明:∠1+∠EPF+∠2=360°;
(類比探究)(2)如圖2,已知AB∥CD,設從E點出發(fā)的(n﹣1)條折線形成的n個角分別為∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度數可能在1700°至2000°之間嗎?若有可能請求出n的值,若不可能請說明理由.
(拓展延伸)(3)如圖3,已知AB∥CD,∠AE1E2的角平分線E1O與∠CEnEn﹣1的角平分線EnO交于點O,若∠E1OEn=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度數.(用含m、n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】烏魯木齊周邊多地盛產草莓,今年某水果銷售店在草莓銷售旺季,以15元/kg 的成本價進50kg有機草莓,銷售人員銷售發(fā)現草莓損壞率為25%;
(1)對于水果店來說完好的草莓實際成本價是多少元/kg?
(2)按照這個實際成本設計銷售單價,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經試銷發(fā)現,銷售量y(千克)與銷售單價x(元)符合一次函數關系,如圖是y與x的函數關系圖象,設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】推理填空:已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4.求證:AD∥BE.
證明:∵∠4=∠AFD( ),
∵∠3=∠4(已知),
∴∠3=∠ ( ).
∵∠1=∠2(已知),
∴∠1+∠3=∠2+∠AFD( ).
∴∠D=∠ ( ).
∴∠B=∠ ( ).
∴∠________=∠ ( ).
∴AD∥BE( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:一條對角線垂直平分另一條對角線的四邊形叫做箏形,如圖,箏形ABCD的對角線AC、BD相交于點O.且AC垂直平分BD.
(1)請結合圖形,寫出箏形兩種不同類型的性質:性質1: ;性質2: .
(2)若AB∥CD,求證:四邊形ABCD為菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com