【題目】為疏導(dǎo)國(guó)慶假期交通,一輛交通巡邏車在南北公路上巡視.某天早上從地出發(fā),中午到達(dá)地,行駛記錄如下(規(guī)定向北為正方向,單位:千米):

,,,,,,

請(qǐng)你解答下列問(wèn)題:

(1)地在地的什么方向?與地相距多遠(yuǎn)?

(2)巡邏車在巡邏中,離開(kāi)地最遠(yuǎn)多少千米?

(3)若巡邏車行駛每千米耗油升,這半天共耗油多少升?

【答案】(1)地在地正北方向,相距;(2)離開(kāi)地最遠(yuǎn)千米;(3)總耗油量為64aL.

【解析】

(1)根據(jù)有理數(shù)的加法,可得答案;

(2)根據(jù)有理數(shù)的加法,可得每次與A地的距離,根據(jù)有理數(shù)的大小比較,可得答案;

(3)根據(jù)單位耗油量乘以行駛路程等于總耗油量,可得答案.

(1)

由于正方向表示正北方向,

地在地正北方向,相距

(2)(表示距

(表示距,下同)

其中絕對(duì)值最大的為,即離開(kāi)地最遠(yuǎn)千米.

(3)

總耗油量為64a(L).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P、Q是邊長(zhǎng)為2的菱形ABCD中兩邊BCCD的中點(diǎn),KBD上一動(dòng)點(diǎn),則KP+KQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)寫出方程 x y =3的兩個(gè)解__________,把方程 x y =3化成一次函數(shù)的形式為__________;

(2)以方程 x y =3的解為坐標(biāo)的所有點(diǎn)組成的圖象與一次函數(shù) y =3- x 的圖象相同嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬(wàn)元.

(1)求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?

(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?

(3)在(2)的條件下,哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出的五個(gè)結(jié)論中:

①最大的負(fù)整數(shù)是-1;②數(shù)軸上表示數(shù)3-3的點(diǎn)到原點(diǎn)的距離相等;

③當(dāng)a≤0時(shí),|a|=-a成立;④若a2=9,則a一定等于3;

一定是正數(shù).說(shuō)法正確的有_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長(zhǎng)線相較于點(diǎn)D,E,F(xiàn),且BF=BC,⊙O是△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交⊙O于點(diǎn)H,連接BD,F(xiàn)H.

(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)若AB=1,求HGHB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用平方根去根號(hào)可以構(gòu)造一個(gè)整系數(shù)方程.例如:x= +1時(shí),移項(xiàng)得x﹣1= ,兩邊平方得(x﹣1)2=( 2 , 所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述構(gòu)造方法,當(dāng)x= 時(shí),可以構(gòu)造出一個(gè)整系數(shù)方程是(
A.4x2+4x+5=0
B.4x2+4x﹣5=0
C.x2+x+1=0
D.x2+x﹣1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①在直角三角形ABC中,已知兩邊長(zhǎng)為34,則第三邊長(zhǎng)為5;

②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;

③△ABC中,若∠A:B:C=1:5:6,則ABC是直角三角形;

④△ABC中,若 a:b:c=1:2:,則這個(gè)三角形是直角三角形.

其中,正確命題的個(gè)數(shù)為( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,5)在函數(shù)x>0)的圖象上,過(guò)點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;Qm,n為圖象上另一動(dòng)點(diǎn),過(guò)點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)CD.隨著m的增大,四邊形OCQD四邊形OAPB不重疊部分的面積

A. 先增大后減小 B. 先減小后增大

C. 先減小后增大再減小 D. 先增大后減小再增大

查看答案和解析>>

同步練習(xí)冊(cè)答案