【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).
(1)求平移后的拋物線的表達(dá)式.
(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?
(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說明理由.
【答案】(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).
【解析】
(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;
(2)先根據(jù)平移后拋物線解析式求得其對(duì)稱軸,從而得出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)C′坐標(biāo),連接BC′,與對(duì)稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;
(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長(zhǎng),從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長(zhǎng),于是可求得點(diǎn)M的坐標(biāo).
(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),
∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,
∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,
∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,
∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),
整理得:y=x2+2x﹣3;
(2)∵y=x2+2x﹣3=(x+1)2﹣4,
∴拋物線對(duì)稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),
則點(diǎn)C關(guān)于直線x=﹣1的對(duì)稱點(diǎn)C′(﹣2,﹣3),
如圖1,
連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,
由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,
則,
解得,
所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);
(3)如圖2,
由得,即D(﹣1,1),
則DE=OD=1,
∴△DOE為等腰直角三角形,
∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,
∵BO=1,
∴BD=,
∵∠BOD=135°,
∴點(diǎn)M只能在點(diǎn)D上方,
∵∠BOD=∠ODM=135°,
∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,
①若,則,解得DM=2,
此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);
②若,則,解得DM=1,
此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);
綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決下列兩個(gè)問題:
(1)如圖1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.點(diǎn)P在直線EF上,直接寫出PA+PB的最小值,并在圖中標(biāo)出當(dāng)PA+PB取最小值時(shí)點(diǎn)P的位置;
解:PA+PB的最小值為 .
(2)如圖2.點(diǎn)M、N在∠BAC的內(nèi)部,請(qǐng)?jiān)凇?/span>BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PM=PN.(尺規(guī)作圖,保留作圖痕跡,無需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一個(gè)蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′.則這根蘆葦?shù)拈L(zhǎng)度是( 。
A. 10尺 B. 11尺 C. 12尺 D. 13尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過D作DFAB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC.若DE=1,則BC的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖所示,結(jié)合圖象回答下列問題.
(1)農(nóng)民自帶的零錢是多少?
(2)試求降價(jià)前y與x之間的關(guān)系式
(3)由表達(dá)式你能求出降價(jià)前每千克的土豆價(jià)格是多少?
(4)降價(jià)后他按每千克0.4元將剩余土豆售完,這時(shí)他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018中國(guó)重慶開州漢豐湖國(guó)際摩托艇公開賽第二年舉辦.鄰近區(qū)縣一旅行社去年組團(tuán)觀看比賽,全團(tuán)共花費(fèi)9600元.今年賽事宣傳工作得力,該旅行社繼續(xù)組團(tuán)前來觀看比賽,人數(shù)比去年增加了,總費(fèi)用增加了3900元,人均費(fèi)用反而下降了20元.
(1)求該旅行社今年有多少人前來觀看賽事?
(2)今年該旅行社本次費(fèi)用中,其它費(fèi)用不低于交通費(fèi)的2倍,求人均交通費(fèi)最多為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com