【題目】如圖,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)在軸上,點(diǎn)在軸上,
,,過點(diǎn)的直線交矩形的邊于點(diǎn),且點(diǎn)不與點(diǎn)、重合,過點(diǎn)作,交軸于點(diǎn),交軸于點(diǎn).
(1)如圖1,若為等腰直角三角形,求直線的函數(shù)解析式;
(2)如圖2,過點(diǎn)作交軸于點(diǎn),若四邊形是平行四邊形,求直線的解析式.
【答案】(1);(2).
【解析】
(1)先求得點(diǎn)P點(diǎn)坐標(biāo)(1,2),再代入解析式y=kx+b,即可得出答案.
(2)作PM⊥AD于M,根據(jù)平行四邊形性質(zhì)求得點(diǎn)E和點(diǎn)P的坐標(biāo),再代入y=mx+n的解析式,即可得出答案.
解:(1)矩形,,,
A(3,0)B(3,2) C(0,2)
∠B=90°,CO=AB=2
為等腰直角三角形
P(1,2)
設(shè)直線的函數(shù)解析式為,過點(diǎn)A,點(diǎn)P
解k=-1,b=3
故直線的函數(shù)解析式為
(2)作PM⊥AD于M
BC∥OA
∠CPD=∠PDA=∠APB
PD=PA,PM⊥AD
DM=AM
四邊形PAEF是平行四邊形
PD=DE
∠PMD=∠DOE,∠ODE=∠PDM
三角形PMD和三角形ODE全等
OD=DM=MA
OE=2,OM=2
E(0,2),P(2,2)
設(shè)直線PE的解析式為y=mx+n
解得m=2,n=-2
故直線PE的解析式為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x的頂點(diǎn)為M,與x軸交于0,A兩點(diǎn),點(diǎn)P(a,0)是線段0A上一動點(diǎn)(不包括端點(diǎn)),過點(diǎn)P作y軸的平行線,交直線y=x于點(diǎn)B,交拋物線于點(diǎn)C,以BC為一邊,在BC的右側(cè)作矩形BCDE,若CD=2,則當(dāng)矩形BCDE與△OAM重疊部分為軸對稱圖形時,a的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,…,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是( 。
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點(diǎn)B,直線l2經(jīng)過點(diǎn)D(0,5),與直線l1交于點(diǎn)C(﹣1,m),且與x軸交于點(diǎn)A,
(1)求點(diǎn)C的坐標(biāo)及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮兩人從甲地出發(fā),沿相同的線路跑向乙地,小明先跑一段路程后,小亮開始出發(fā),當(dāng)小亮超過小明150米時,小亮停在此地等候小明,兩人相遇后,兩人一起以小明原來的速度跑向乙地,如圖是小明、小亮兩人在跑步的全過程中經(jīng)過的路程y(米)與小明出發(fā)的時間x(秒)的函數(shù)圖象,請根據(jù)題意解答下列問題:
(1)在跑步的全過程中,小明共跑了 米,小明的速度為 米/秒.
(2)求小亮跑步的速度及小亮在途中等候小明的時間;
(3)求小亮出發(fā)多長時間第一次與小明相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:
(1)數(shù)軸上表示4和1的兩點(diǎn)之間的距離是________;表示和2兩點(diǎn)之間的距離是______;一般地,數(shù)軸上表示數(shù)和數(shù)的兩點(diǎn)之間的距離等于.如果表示數(shù)和的兩點(diǎn)之間的距離是3,那么_______.
(2)若數(shù)軸上表示數(shù)的點(diǎn)位于與2之間,求的值;
(3)受(2)的啟發(fā),當(dāng)數(shù)的點(diǎn)在圖1什么位置時,的值最小,最小值是多少?
(4)有理數(shù)、、在數(shù)軸上對應(yīng)的位置如圖2所示,試化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時間與B型機(jī)器人搬運(yùn)800kg材料所用的時間相同.
(1)求A,B兩種型號的機(jī)器人每小時分別搬運(yùn)多少材料;
(2)該公司計劃采購A,B兩種型號的機(jī)器人共20臺,要求每小時搬運(yùn)材料不得少于2800kg,則至少購進(jìn)A型機(jī)器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)(0,1),點(diǎn)(1,0),正方形的兩條對角線的交點(diǎn)為,延長至點(diǎn),使.延長至點(diǎn),使,以,為鄰邊做正方形.
(Ⅰ)如圖①,求的長及的值;
(Ⅱ)如圖②,正方形固定,將正方形繞點(diǎn)逆時針旋轉(zhuǎn),得正方形,記旋轉(zhuǎn)角為(0°<<360°),連接.
①旋轉(zhuǎn)過程中,當(dāng)90°時,求的大小;
②在旋轉(zhuǎn)過程中,求的長取最大值時,點(diǎn)的坐標(biāo)及此時的大。ㄖ苯訉懗鼋Y(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+12與x軸,y軸分別相交于點(diǎn)A,B,∠ABO的平分線與x軸相交于點(diǎn)C.
(1)如圖1,求點(diǎn)C的坐標(biāo);
(2)如圖2,點(diǎn)D,E,F(xiàn)分別在線段BC,AB,OB上(點(diǎn)D,E,F(xiàn)都不與點(diǎn)B重合),連接DE,DF,EF,且∠EDF+∠OBC=90°,求證:∠FED=∠AED;
(3)如圖3,在(2)的條件下,延長線段FE與x軸相交于點(diǎn)G,連接DG,若∠CGD=∠FGD,BF:BE=5:8,求直線DF的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com