【題目】如圖,∠MON=90°,正方形ABCD的頂點A、B分別在OM、ON上,AB=13,OB=5,E為AC上一點,且∠EBC=∠CBN,直線DE與ON交于點F.
(1)求證BE=DE;
(2)判斷DF與ON的位置關系,并說明理由;
(3)△BEF的周長為 .
【答案】(1)見解析;(2)DF⊥ON,理由見解析;(3)24
【解析】
(1)根據(jù)正方形的性質證明△BCE≌△DCE即可;
(2)由第一題所得條件和已知條件可推出∠EDC=∠CBN,再利用90°的代換即可證明;
(3)過D點作DG垂直于OM,交點為G,結合已知條件推出DF和BF的長,再根據(jù)第一題結論得出△BEF的周長等于DF加BF即可得出答案.
解:(1)證明:∵四邊形ABCD正方形,
∴CA平分∠BCD,BC=DC,
∴∠BCE=∠DCE=45°,
∵CE=CE,
∴△BCE≌△DCE(SAS);
∴BE=DE;
(2)DF⊥ON,理由如下:
∵△BCE≌△DCE,
∴∠EBC=∠EDC,
∵∠EBC=∠CBN,
∴∠EDC=∠CBN,
∵∠EDC+∠1=90°,∠1=∠2,
∴∠2+∠CBN=90°,
∴∠EFB=90°,即DF⊥ON;
(3)過D點作DG垂直于OM,交點為G,
∵四邊形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAG+∠BAO=90°,
∵∠ABO+∠BAO=90°,
∴∠DAG=∠ABO,
又∵∠MON=90°,DG⊥OM,
∴△ADG≌△ABO,
∴DM=AO,GA=OB=5,
∵AB=13,OB=5,
根據(jù)勾股定理可得AO=12,
由(2)可知DF⊥ON,
又∵∠MON=90°,DG⊥OM,
∴四邊形OFDM是矩形,
∴OF=DG=AO=12,DF=OM=17,
由(1)可知BE=DE,
∴△BEF的周長=DF+BF=17+(12-5)=24.
科目:初中數(shù)學 來源: 題型:
【題目】在學習完《有理數(shù)》后,小奇對運算產生了濃厚的興趣.借助有理數(shù)的運算,定義了一種新運算“⊕”,規(guī)則如下:a⊕b=a×b+2×a.
(1)求2⊕(﹣1)的值;
(2)求﹣3⊕(﹣4⊕)的值;
(3)試用學習有理數(shù)的經驗和方法來探究這種新運算“⊕”是否具有交換律?請寫出你的探究過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)(k>0)的圖象經過BC邊的中點D(3,1).
(1)求這個反比例函數(shù)的表達式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把順次連接四邊形各邊中點所得的四邊形叫做中點四邊形.若一個任意四邊形的面積為a,則它的中點四邊形面積為( )
A.aB. C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)初中生一周課外閱讀時長的情況,隨機抽取部分中學生進行調查,根據(jù)調查結果,將閱讀時長分為四類:2小時以內,2~4小時(含2小時),4~6小時(含4小時),6小時及以上,并繪制了如圖所示不完整的統(tǒng)計圖.
(1)本次調查共隨機抽取了 名學生;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,課外閱讀時長“4~6小時”對應的圓心角度數(shù)為 ;
(4)若該區(qū)共有10 000名初中生,估計該地區(qū)中學生一周課外閱讀時長不少于4小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(1)﹣7﹣1;
(2)(﹣3)+(﹣5)﹣(+11)﹣(﹣17);
(3)﹣3+8﹣7;
(4)()×(﹣24);
(5)()×(﹣12);
(6)(﹣0.1)﹣(﹣8)+(﹣11)﹣(﹣);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像經過第二象限內的點,軸于點,的面積為2.若直線經過點,并且經過反比例函數(shù)的圖像上另一點.
(1)求反比例函數(shù)與直線的解析式;
(2)連接,求的面積;
(3)不等式的解集為_________
(4)若在圖像上,且滿足,則的取值范圍是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正內接于是劣弧BC上任意一點,PA與BC交于點E,有如下結論:
; ; ;
; 圖中共有6對相似三角形.
其中,正確結論的個數(shù)為
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com