【題目】小明和同學(xué)做“拋擲質(zhì)地均勻的硬幣試驗(yàn)”獲得的數(shù)據(jù)如下表
拋擲次數(shù) | 100 | 200 | 300 | 400 | 500 |
正面朝上的頻數(shù) | 53 | 98 | 156 | 202 | 249 |
若拋擲硬幣的次數(shù)為1000,則“正面朝上”的頻數(shù)最接近( )
A.200B.300C.400D.500
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各式.
(1)3 +(﹣ )﹣(﹣ )+2
(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣ )2
(3)4 ×[﹣9×(﹣ )2﹣0.8]÷(﹣5 );
(4)( + ﹣ )×(﹣12)
(5)﹣24﹣[(﹣3)2﹣(1﹣23× )÷(﹣2)]
(6)(﹣96)×(﹣0.125)+96× +(﹣96)×
(7)(3a﹣2)﹣3(a﹣5)
(8)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)
(9)x﹣2[y+2x﹣(3x﹣y)]
(10)m﹣2(m﹣ n2)﹣( m﹣ n2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知射線OC上的任意一點(diǎn)到∠AOB的兩邊的距離都相等,點(diǎn)D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫(xiě)出所有可能的條件的序號(hào)__________.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點(diǎn),F(xiàn)為BE上的一點(diǎn),連結(jié)CF并延長(zhǎng)交AB于點(diǎn)M,MN⊥CM交射線AD于點(diǎn)N.
(1)當(dāng)F為BE中點(diǎn)時(shí),求證:AM=CE;
(2)若 =2,求的值;
(3)若=n,當(dāng)n為何值時(shí),MN∥BE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店把一本新書(shū)按標(biāo)價(jià)的八折出售,仍獲利20%,若該書(shū)進(jìn)價(jià)為20元,則標(biāo)價(jià)( )
A.24元
B.26元
C.28元
D.30元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多項(xiàng)式4xy2-5x3y4+(m-5)x6y2-2與多項(xiàng)式-2xny4+6xy-3x-7(n是自然數(shù))的次數(shù)相同,且最高次項(xiàng)的系數(shù)也相同.求5m-2n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:
PA= , PC=;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.在點(diǎn)Q開(kāi)始運(yùn)動(dòng)后,P,Q兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請(qǐng)求出此時(shí)點(diǎn)P表示的數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無(wú)論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根:
(2)若x1,x2是原方程的兩根,且|x1﹣x2|=2,求m的值,并求出此時(shí)方程的兩根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com