【題目】(問題探究)小敏在學(xué)習(xí)了RtABC的性質(zhì)定理后,繼續(xù)進(jìn)行研究.

1)(i)她發(fā)現(xiàn)圖①中,如果∠A30°,BCAB存在特殊的數(shù)量關(guān)系是   ;

ii)她將△ABC沿AC所在的直線翻折得△AHC,如圖②,此時她證明了BCAB的關(guān)系;請根據(jù)小敏證明的思路,補(bǔ)全探究的證明過程;

猜想:如果∠A30°,BCAB存在特殊的數(shù)量關(guān)系是   

證明:△ABC沿AC所在的直線翻折得△AHC,

2)如圖③,點(diǎn)E、F分別在四邊形ABCD的邊BCCD上,且∠B=∠D90°,連接AE、AFEF,將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,連接AC,若∠EAF30°,AB227,則△CEF的周長為   

【答案】1)(iBCAB;(iiBCAB;(26

【解析】

1)(i)在AB上截取BDBC,可證△BCD是等邊三角形,CDBD,∠BDC=∠BCD60°,可得BDADCDBC,可得結(jié)論;

ii)由折疊的性質(zhì)可得ABAH,∠BAC=∠HAC30°,BCCH,可證△ABH是等邊三角形,可得ABBH2BC;

2)由折疊的性質(zhì)可得ABAD,BE+DFEF,∠BAD2EAF60°,由HL可證RtABCRtADC,可得∠BAC=∠DAC30°BCCD,由直角三角形的性質(zhì)可求BC3,即可求解.

解:(1)(iBCAB,

理由如下:在AB上截取BDBC,

∵∠A30°,∠ACB90°,

∴∠B60°,且BDBC

∴△BCD是等邊三角形,

CDBD,∠BDC=∠BCD60°

∴∠ACD30°=∠A,

ADCD,

BDADBC,

BCAB;

ii)∵將△ABC沿AC所在的直線翻折得△AHC

∴△ABC≌△AHC,

ABAH,∠BAC=∠HAC30°,BCCH,

∴∠BAH60°,且ABAH,

∴△ABH是等邊三角形,

ABBH,

BCBHAB;

2)∵將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,

ABAD,BE+DFEF,∠BAD2EAF60°

ABADACAC,

RtABCRtADCHL),

∴∠BAC=∠DAC30°,BCCD,

AB227,

AB3,

tanBAC

BC3CD,

∴△CEF的周長=EC+CF+EFEC+CF+BE+DFBC+CD6

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,點(diǎn)分別落在點(diǎn)、處,點(diǎn)軸上,再將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,點(diǎn)軸上,將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,點(diǎn)軸上,依次進(jìn)行下去.若點(diǎn),,則點(diǎn)的坐標(biāo)為(

A. B. C. D.

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小澤和小帥兩同學(xué)分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會實(shí)踐活動.如圖折線OAB和線段CD分別表示小澤和小帥離甲地的距離y(單位:千米)與時間x(單位:小時)之間函數(shù)關(guān)系的圖象.根據(jù)圖中提供的信息,解答下列問題:

1)小帥的騎車速度為 千米/小時;點(diǎn)C的坐標(biāo)為 ;

2)求線段AB對應(yīng)的函數(shù)表達(dá)式;

3)當(dāng)小帥到達(dá)乙地時,小澤距乙地還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且ADCE,則∠ADC+BEA=( 。

A.180°B.170°C.160°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知△ABC的三個頂點(diǎn)在格點(diǎn)上.

1)畫出△ABC關(guān)于直線l對稱的△A1B1C1;

2)在直線l上找一點(diǎn)P,使PA+PB的長最短;(不寫作法,保留作圖痕跡)

3)△ABC   直角三角形(填不是),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCECD的中點(diǎn),連接AE、BE,BEAE,延長AEBC的延長線于點(diǎn)F

求證:(1)FCAD;(2)ABBC+AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作發(fā)現(xiàn):如圖1,D是等邊△ABCBA上的一動點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,易證AF=BD(不需要證明);

類比猜想:①如圖2,當(dāng)動點(diǎn)D運(yùn)動至等邊△ABCBA的延長線上時,其它作法與圖1相同,猜想AFBD在圖1中的結(jié)論是否仍然成立。

深入探究:②如圖3,當(dāng)動點(diǎn)D在等邊△ABCBA上的一動點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′你能發(fā)現(xiàn)AF,BF′AB有何數(shù)量關(guān)系,并證明你發(fā)現(xiàn)的結(jié)論。

③如圖4,當(dāng)動點(diǎn)D運(yùn)動至等邊△ABCBA的延長線上時,其它作法與圖3相同,猜想AF,BF′AB在上題②中的結(jié)論是否仍然成立,若不成立,請給出你的結(jié)論并證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A、C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=

(1)求點(diǎn)B的坐標(biāo);

(2)x軸上找一點(diǎn)D,連接BD使得△ABD△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB = 30°,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且OP = 7,點(diǎn)E和點(diǎn)F分別是射線OA和射線OB上的動點(diǎn),則△PEF周長的最小值是______.

查看答案和解析>>

同步練習(xí)冊答案