【題目】如圖(1),某數(shù)學(xué)活動(dòng)小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點(diǎn)P,此時(shí)PA· PB=PC·PD

1)如圖(2),若ABCD相交于圓外一點(diǎn)P, 上面的結(jié)論是否成立?請(qǐng)說明理由.

2)如圖(3,PD繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)至與⊙O相切于點(diǎn)C, 直接寫出PAPB、PC之間的數(shù)量關(guān)系.

3)如圖(3),直接利用(2)的結(jié)論,求當(dāng) PC= ,PA=1時(shí),陰影部分的面積.

【答案】1)成立,理由見解析;(2;(3

【解析】

1)連接ADBC,得到∠D=B,可證△PAD∽△PCB,即可求解;

2)根據(jù)(1)中的結(jié)論即可求解;

3)連接OC,根據(jù) ,PC= ,PA=1求出PB=3 , AO=CO=1,PO=2 利用,得到AOC為等邊三角形,再分別求出,即可求解.

解:(1)成立

理由如下:如圖,連接ADBC

∠D=∠B

∵∠P=∠P

∴△PAD∽△PCB

=

∴PA· PB=PC·PD

(2)當(dāng)PD與⊙O相切于點(diǎn)C時(shí),

PC=PD

由(1)得PA· PB=PC·PD

(3)如圖,連接OC

,PC= ,PA=1

PB=3 , AO=CO=1,PO=2

PC ⊙O相切于點(diǎn)C

PCO為直角三角形

,

AOC為等邊三角形

=

==

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m圖象過點(diǎn)A(1,0),交y軸于點(diǎn),y軸負(fù)半軸上一點(diǎn),且,過、兩點(diǎn)的拋物線交直線于點(diǎn),且CD//x軸.

1)求這條拋物線的解析式;

2)觀察圖象,寫出使一次函數(shù)值小于二次函數(shù)值時(shí)的取值范圍;

3)在題中的拋物線上是否存在一點(diǎn),使得為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A0,﹣3),B5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2

1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

2)在x軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不在,請(qǐng)說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AMBN是⊙O的兩條切線,E為⊙O上一點(diǎn),過點(diǎn)E作直線DC分別交AM,BN于點(diǎn)D,C,且CB=CE.

(1)求證:DA=DE;

(2)若AB=6,CD=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為的拋物線軸交于,兩點(diǎn),直線過頂點(diǎn)和點(diǎn)

(1)求的值;

(2)求函數(shù)的解析式;

(3)拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由兩個(gè)長(zhǎng)為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:任何有理數(shù)的平方都是一個(gè)非負(fù)數(shù),即對(duì)于任何有理數(shù)a,都有 成立,所以,當(dāng)時(shí),有最小值0.

(應(yīng)用):(1)代數(shù)式有最小值時(shí), ;

2)代數(shù)式的最小值是 ;

(探究):求代數(shù)式的最小值,小明是這樣做的:

∴當(dāng)時(shí),代數(shù)式有最小值,最小值為5

3)請(qǐng)你參照小明的方法,求代數(shù)式的最小值,并求此時(shí)a的值.

(拓展):(4)若,直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接ACBC,DBDC,

(1)求拋物線的函數(shù)表達(dá)式;

(2)△BCD的面積等于△AOC的面積的時(shí),求的值;

(3)(2)的條件下,若點(diǎn)M軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,,點(diǎn)、分別是、的中點(diǎn),連接.

1)在圖①中,的值為______;的值為______.

2)若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,點(diǎn)、的對(duì)應(yīng)點(diǎn)為、,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請(qǐng)僅就圖②的情形給出證明.

3)當(dāng)在旋轉(zhuǎn)一周的過程中,,三點(diǎn)共線時(shí),請(qǐng)你直接寫出線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案