【題目】滴滴快車是一種便捷的出行工具,某地的計(jì)價(jià)規(guī)則如下表:

計(jì)費(fèi)項(xiàng)目

里程費(fèi)

時(shí)長(zhǎng)費(fèi)

遠(yuǎn)途費(fèi)

單價(jià)

2/公里

/分鐘

1/公里

注:車費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車的實(shí)際時(shí)間計(jì)算;遠(yuǎn)途費(fèi)的收取方式為:行車?yán)锍?/span>7公里以內(nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過7公里的,超出部分每公里收1元.

小李與小張分別從不同地點(diǎn),各自同時(shí)乘坐滴滴快車,到同一地點(diǎn)相見,已知到達(dá)約定地點(diǎn)時(shí)他們的實(shí)際行車?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車的乘車費(fèi)相同.其中一人先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車時(shí)間,且恰好是另一人實(shí)際乘車時(shí)間的一半,則小李的乘車費(fèi)為______元.

【答案】26

【解析】

根據(jù)兩人的費(fèi)用一樣,可判斷小張乘車用時(shí)短,小李用時(shí)長(zhǎng),設(shè)小張用時(shí)為t,可得小李用時(shí)為2t,先求出t,進(jìn)而可得出乘車費(fèi)用.

∵小張乘車距離比小李長(zhǎng),但兩人費(fèi)用一樣

∴小張乘車時(shí)間短

設(shè)小張乘車時(shí)間為t分鐘

∵先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車時(shí)間,且恰好是另一人實(shí)際乘車時(shí)間的一半

∴小李乘車時(shí)間為2t分鐘

2×9+0.3t+1×(9-7)=2×7+0.3×2t

解得:t=20

∴小李乘車費(fèi)用=2×7+0.3×2×20=26

故答案為:26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A、C在平面直角坐標(biāo)系的坐標(biāo)軸上,AB=4,CB=3,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E、F分別是線段DA、AC上的動(dòng)點(diǎn)(點(diǎn)E不與A、D重合),且∠CEF=ACB,若△EFC為等腰三角形,則點(diǎn)E的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線;

理解:

如圖1ABC的三個(gè)頂點(diǎn)均在正方形網(wǎng)格中的格點(diǎn)上,若四邊形ABCD是以AC相似對(duì)角線的四邊形,請(qǐng)用無刻度的直尺在網(wǎng)格中畫出點(diǎn)D(保留畫圖痕跡,找出3個(gè)即可);

如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對(duì)角線BD平分∠ABC. 請(qǐng)問BD是四邊形ABCD相似對(duì)角線嗎?請(qǐng)說明理由;

運(yùn)用:

如圖3,已知FH是四邊形EFGH相似對(duì)角線 EFH=∠HFG30°.連接EG,若EFG的面積為,求FH 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師將1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓學(xué)生進(jìn)行摸球試驗(yàn),每次摸出一個(gè)球(放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.23

0.21

0.30

0.26

0.253

1= ,根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)黑球的概率是   

2)估算袋中白球的個(gè)數(shù)為   

3)在(2)的條件下,若小強(qiáng)同學(xué)從袋中摸出兩個(gè)球,用畫樹狀圖或列表的方法計(jì)算摸出的兩個(gè)球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB8,射線BGABP為射線BG上一點(diǎn),以AP為邊作正方形APCD,且點(diǎn)CD與點(diǎn)BAP兩側(cè),在線段DP上取一點(diǎn)E,使∠EAP=∠BAP,直線CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).

1)求證:AEP≌△CEP;

2)判斷CFAB的位置關(guān)系,并說明理由;

3)求AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意一個(gè)四位數(shù),我們可以記為,即.若規(guī)定: 對(duì)四位正整數(shù)進(jìn)行 F運(yùn)算,得到整數(shù).例如,;

1)計(jì)算:

2)當(dāng)時(shí),證明:的結(jié)果一定是4的倍數(shù);

3)求出滿足的所有四位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AB4,點(diǎn)CAB延長(zhǎng)線上一點(diǎn),且BC2,點(diǎn)D是半圓的中點(diǎn),點(diǎn)P是⊙O上任意一點(diǎn).

1)當(dāng)PDAB交于點(diǎn)EPCCE時(shí),求證:PC與⊙O相切;

2)在(1)的條件下,求PC的長(zhǎng);

3)點(diǎn)P是⊙O上動(dòng)點(diǎn),當(dāng)PD+PC的值最小時(shí),求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為ABC交⊙O于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為2,∠B50°AC5,求圖中陰影部分的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=1,CD=,連接AC,將線段AC、AB分別繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°AEAF,線段AE與弧BF交于點(diǎn)G,連接CG,則圖中陰影部分面積為__.

查看答案和解析>>

同步練習(xí)冊(cè)答案