【題目】定義:我們知道,四邊形的一條對(duì)角線(xiàn)把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線(xiàn)叫做這個(gè)四邊形的相似對(duì)角線(xiàn);

理解:

如圖1ABC的三個(gè)頂點(diǎn)均在正方形網(wǎng)格中的格點(diǎn)上,若四邊形ABCD是以AC相似對(duì)角線(xiàn)的四邊形,請(qǐng)用無(wú)刻度的直尺在網(wǎng)格中畫(huà)出點(diǎn)D(保留畫(huà)圖痕跡,找出3個(gè)即可);

如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對(duì)角線(xiàn)BD平分∠ABC. 請(qǐng)問(wèn)BD是四邊形ABCD相似對(duì)角線(xiàn)嗎?請(qǐng)說(shuō)明理由;

運(yùn)用:

如圖3,已知FH是四邊形EFGH相似對(duì)角線(xiàn), EFH=∠HFG30°.連接EG,若EFG的面積為,求FH 的長(zhǎng).

【答案】1)如圖1,△ACD1、△ACD2、、△ACD3△ACD4(任畫(huà)三個(gè)即可);(2BD是四邊形ABCD的“相似對(duì)角線(xiàn)”,理由見(jiàn)解析;(3FH=

【解析】

1)根據(jù)相似對(duì)角線(xiàn)的定義,利用方格紙的特點(diǎn)可找到D點(diǎn)的位置;

2)先說(shuō)明∠A+ADB=140°=ADC,即可說(shuō)明理由;

3)先判斷出△FEHC∽△FHG,得出FH2=FE·FG,再求出EQ=FE,即可求得FH的值.

解:(1)由圖1可得,AB=BC=2,∠ABC=90°,AC=5

四邊形ABCD是以AC為“相似對(duì)角線(xiàn)”的四邊形,

①當(dāng)∠ACD=90°時(shí),△ACD∽△ABC或△ACD∽△CBA,

CD=10CD=2.5

同理:當(dāng)∠CAD=90°時(shí),AD=2.5AD=10

根據(jù)方格紙的特點(diǎn)可找到D點(diǎn)的位置,然后再連接CDAD

即如圖△ACD1、△ACD2、、△ACD3、△ACD4(任畫(huà)三個(gè)即可)即為所求;

2BD是四邊形ABCD的“相似對(duì)角線(xiàn)”,理由如下:

∵∠ABC=80°,BD平分∠ABC

∴∠ABD=DBC=40°,

∵∠A+ADB=140°

∵∠ADC=140°,

∴∠BDC+ADB=140°,

∴∠A=BDC,

∴△ABD∽△DBC,

BD是四邊形ABCD的“相似對(duì)角線(xiàn)”;

3)∵FH是四邊形EFGH的“相似對(duì)角線(xiàn)”,

∴△EFH與△HFG相似,

∵∠EFH=HFG,

∴△FEHC∽△FHG,

∴FH2=FE·FG,

如圖3,過(guò)點(diǎn)EEQFGQ,

EQ=FE·sin60°=FE

.

FG·FE=24,

∵FH2=FE·FG,

∴FH2=24

∴FH=FH=-(舍去)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)軸交于AB兩點(diǎn),與軸交于點(diǎn)C,連接BC

1)如圖1,求直線(xiàn)BC的表達(dá)式;

2)如圖1,點(diǎn)P是拋物線(xiàn)上位于第一象限內(nèi)的一點(diǎn),連接PCPB,當(dāng)△PCB面積最大時(shí),一動(dòng)點(diǎn)Q從點(diǎn)P從出發(fā),沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)G處,再沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)H處,最后到達(dá)線(xiàn)段BC的中點(diǎn)F處停止,求當(dāng)△PCB面積最大時(shí),點(diǎn)P的坐標(biāo)及點(diǎn)Q在整個(gè)運(yùn)動(dòng)過(guò)程中經(jīng)過(guò)的最短路徑的長(zhǎng);

3)如圖2,在(2)的條件下,當(dāng)△PCB面積最大時(shí),把拋物線(xiàn)向右平移使它的圖象經(jīng)過(guò)點(diǎn)P,得到新拋物線(xiàn),在新拋物線(xiàn)上,是否存在點(diǎn)E,使△ECB的面積等于△PCB的面積.若存在,請(qǐng)求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次綜合實(shí)踐活動(dòng)中,小亮要測(cè)量一樓房的高度,先在坡面處測(cè)得樓房頂部的仰角為,沿坡面向下走到坡腳處,然后向樓房方向繼續(xù)行走10米到達(dá)處,測(cè)得樓房頂部的仰角為.已知坡面米,山坡的坡度(坡度是指坡面的鉛直高度與水平寬度的比),求樓房高度.(結(jié)果精確到0.1米)(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,過(guò)點(diǎn)AAEBC于點(diǎn)E,延長(zhǎng)BCF,使CFBE,連接DF

1)求證:四邊形AEFD是矩形;(2)若BF8DF4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.

求證:△ABE≌△CBF;

CFAE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),點(diǎn)A,B,C,D均落在格點(diǎn)上,點(diǎn)EAB的中點(diǎn),過(guò)點(diǎn)EEFAD,交BC于點(diǎn)F,作AGEF,交FE延長(zhǎng)線(xiàn)于點(diǎn)G,則線(xiàn)段EG的長(zhǎng)度是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】思維探索:

在正方形ABCD中,AB4,∠EAF的兩邊分別交射線(xiàn)CB,DC于點(diǎn)E,F,∠EAF45°.

1)如圖1,當(dāng)點(diǎn)E,F分別在線(xiàn)段BC,CD上時(shí),△CEF的周長(zhǎng)是   

2)如圖2,當(dāng)點(diǎn)EF分別在CB,DC的延長(zhǎng)線(xiàn)上,CF2時(shí),求△CEF的周長(zhǎng);

拓展提升:

如圖3,在RtABC中,∠ACB90°,CACB,過(guò)點(diǎn)BBDBC,連接AD,在BC的延長(zhǎng)線(xiàn)上取一點(diǎn)E,使∠EDA30°,連接AE,當(dāng)BD2,∠EAD45°時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滴滴快車(chē)是一種便捷的出行工具,某地的計(jì)價(jià)規(guī)則如下表:

計(jì)費(fèi)項(xiàng)目

里程費(fèi)

時(shí)長(zhǎng)費(fèi)

遠(yuǎn)途費(fèi)

單價(jià)

2/公里

/分鐘

1/公里

注:車(chē)費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車(chē)的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車(chē)的實(shí)際時(shí)間計(jì)算;遠(yuǎn)途費(fèi)的收取方式為:行車(chē)?yán)锍?/span>7公里以?xún)?nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過(guò)7公里的,超出部分每公里收1元.

小李與小張分別從不同地點(diǎn),各自同時(shí)乘坐滴滴快車(chē),到同一地點(diǎn)相見(jiàn),已知到達(dá)約定地點(diǎn)時(shí)他們的實(shí)際行車(chē)?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車(chē)的乘車(chē)費(fèi)相同.其中一人先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車(chē)時(shí)間,且恰好是另一人實(shí)際乘車(chē)時(shí)間的一半,則小李的乘車(chē)費(fèi)為______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60°,點(diǎn)C為弧BD的中點(diǎn),則AC的長(zhǎng)是__

查看答案和解析>>

同步練習(xí)冊(cè)答案