(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(點A在點B的左邊),交y軸于點C,且經(jīng)過點(b-2,2b2-5b-1).

(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點,交y軸于另一點D,求點M的坐標;
(3)連接AM、DM,將∠AMD繞點M順時針旋轉(zhuǎn),兩邊MA、MD與x軸、y軸分別交于點E、F,若△DMF為等腰三角形,求點E的坐標.
解:(1)把點(b-2,2b2-5b-1)代入y=x2+bx-3b+3,得
2b2-5b-1=(b-2)2+b(b-2)-3b+3, 解得b=2。
∴拋物線的解析式為y=x2+2x-3。
(2)由x2+2x-3=0,得x=-3或x=1。∴A(-3,0)、B(1,0)。
由x=0得y=-3,∴(0,-3)。
∵拋物線的對稱軸是直線x=-1,圓心M在直線x=-1上,
∴設(shè)M(-1,n),作MG⊥x軸于G,MH⊥y軸于H,連接MC、MB。

∴MH=1,BG=2。
∵MB=MC,∴BG2+MG2=MH2+CH2,
即4+n2=1+(3+n)2,解得n=-1!帱cM(-1,-1)。
(3)如圖,由M(-1,-1),得MG=MH。
∵MA=MD,∴Rt△AMG≌RtDMH!唷1=∠2。
由旋轉(zhuǎn)可知∠3=∠4, ∴△AME≌△DMF。
若△DMF為等腰三角形,則△AME為等腰三角形。  
設(shè)E(x,0),△AME為等腰三角形,分三種情況:
①AE=AM=,則x=-3,∴E(-3,0)。
②∵M在AB的垂直平分線上,∴MA=ME=MB,∴E(1,0)。      
③點E在AM的垂直平分線上,則AE=ME,
AE=x+3,ME2=MG2+EG2=1+(-1-x)2,
∴(x+3)2=1+(-1-x)2,解得x=,∴E(,0)。
∴所求點E的坐標為(-3,0),(1,0),(,0)。
(1)將點(b-2,2b2-5b-1)代入拋物線解析式,求出未知數(shù),從而得到拋物線的解析式。
(2)利用垂徑定理及勾股定理,求出點M的坐標。
(3)首先,證明△AME≌△DMF,從而將“△DMF為等腰三角形”的問題,轉(zhuǎn)化為“△AME為等腰三角形”的問題;其次,△AME為等腰三角形,可能有三種情形,需要分類討論,逐一解析計算。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關(guān)系式,并求出面積為48時BC的長;
(2)當BC多長時,△ABC的面積最大?最大面積是多少?
(3)當△ABC面積最大時,是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C

(1)求拋物線的函數(shù)解析式.
(2)設(shè)點D在拋物線上,點E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點D的坐標.
(3)P是拋物線上第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,二次函數(shù)(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)是常數(shù))
(1)若該函數(shù)的圖像與軸只有一個交點,求的值;
(2)若點在某反比例函數(shù)的圖像上,要使該反比例函數(shù)和二次函數(shù)都是的增大而增大,求應滿足的條件以及的取值范圍;
(3)設(shè)拋物線軸交于兩點,且,在軸上,是否存在點P,使△ABP是直角三角形?若存在,求出點P及△ABP的面積;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2013年浙江義烏3分)如圖,拋物線y=ax2+bx+c與x軸交于點A(1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結(jié)論:
①當x>3時,y<0;②3a+b>0;③;④3≤n≤4中,
正確的是【   】
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,某學校擬建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2

(1)求S與x的函數(shù)關(guān)系式;
(2)學校準備在矩形內(nèi)種植紅色花草,四個三角形內(nèi)種植黃色花草.已知紅色花草的價格為20元/米2,黃色花草的價格為40元/米2.當x為何值時,購買花草所需的總費用最低,并求出最低總費用(結(jié)果保留根號)?

查看答案和解析>>

同步練習冊答案