如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
解:(1)∵點A(﹣1,0)在拋物線y=﹣(x﹣1)2+c上,
∴0=﹣(﹣1﹣1)2+c,解得c=4。
∴拋物線解析式為:y=﹣(x﹣1)2+4。
令x=0,得y=3,∴C(0,3);
令y=0,得x=﹣1或x=3,∴B(3,0)。
(2)△CDB為直角三角形。理由如下:
由拋物線解析式,得頂點D的坐標為(1,4)。
如答圖1所示,過點D作DM⊥x軸于點M,

則OM=1,DM=4,BM=OB﹣OM=2。
過點C作CN⊥DM于點N,
則CN=1,DN=DM﹣MN=DM﹣OC=1。
在Rt△OBC中,由勾股定理得:;
在Rt△CND中,由勾股定理得:
在Rt△BMD中,由勾股定理得:
∵BC2+CD2=BD2,∴根據(jù)勾股定理的逆定理,得△CDB為直角三角形。
(3)設直線BC的解析式為y=kx+b,
∵B(3,0),C(0,3),∴,解得。
∴直線BC的解析式為y=﹣x+3。
∵直線QE是直線BC向右平移t個單位得到,
∴直線QE的解析式為:y=﹣(x﹣t)+3=﹣x+3+t。
設直線BD的解析式為y=mx+m,
∵B(3,0),D(1,4),∴,解得:。
∴直線BD的解析式為y=﹣2x+6。
連接CQ并延長,射線CQ交BD于點G,則G(,3)。
在△COB向右平移的過程中:
①當0<t≤時,如答圖2所示:

設PQ與BC交于點K,可得QK=CQ=t,PB=PK=3﹣t.
設QE與BD的交點為F,
則:,解得,∴F(3﹣t,2t)。
∴S=SQPE﹣SPBK﹣SFBE
=PE•PQ﹣PB•PK﹣BE•yF
=×3×3﹣(3﹣t)2﹣t•2t=。
②當<t<3時,如答圖3所示,

設PQ分別與BC、BD交于點K、點J,
∵CQ=t,∴KQ=t,PK=PB=3﹣t。
直線BD解析式為y=﹣2x+6,令x=t,得y=6﹣2t!郕(t,6﹣2t)。
∴S=SPBJ﹣SPBK=PB•PJ﹣PB•PK=(3﹣t)(6﹣2t)﹣(3﹣t)2=t2﹣3t+。
綜上所述,S與t的函數(shù)關(guān)系式為:S=。

試題分析:(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標。
(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形。
(3)△COB沿x軸向右平移過程中,分兩個階段:
①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;
②當<t<3時,如答圖3所示,此時重疊部分為一個三角形。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A     ,k=     
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(點A在點B的左邊),交y軸于點C,且經(jīng)過點(b-2,2b2-5b-1).

(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點,交y軸于另一點D,求點M的坐標;
(3)連接AM、DM,將∠AMD繞點M順時針旋轉(zhuǎn),兩邊MA、MD與x軸、y軸分別交于點E、F,若△DMF為等腰三角形,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過△ABC的三個頂點,點A坐標為(0,3),點B坐標為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達式及點C的坐標;
(2)點E為線段OC上一動點,以OE為邊在第一象限內(nèi)作正方形OEFG,當正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動.設平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當t為何值時,S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標為(﹣1,0).

(1)求D點的坐標;
(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);
(3)如圖2,已知點P(﹣4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當∠PMA=∠E時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點C.


(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點P是x軸下方的拋物線上一動點, 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點P的坐標;
(3) 在此拋物線上是否存在點Q,使得以A,C,B,Q四點為頂點的四邊形是直角梯形?若存在, 求出Q點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=﹣x2平移后的位置如圖所示,點A,B坐標分別為(﹣1,0)、(3,0),設平移后的拋物線與y軸交于點C,其頂點為D.

(1)求平移后的拋物線的解析式和點D的坐標;
(2)∠ACB和∠ABD是否相等?請證明你的結(jié)論;
(3)點P在平移后的拋物線的對稱軸上,且△CDP與△ABC相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有下列4個命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x﹣2y+2=0,若點P也在的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=﹣2(x﹣5)2+3的頂點坐標是   

查看答案和解析>>

同步練習冊答案