如圖,要使平行四邊形ABCD是矩形,則應(yīng)添加的條件是     (添加一個(gè)條件即可).
∠ABC=90°或AC=BD.

試題分析:
解:根據(jù)矩形的判定定理:對(duì)角線相等的平行四邊形是矩形,有一個(gè)角是直角的平行四邊形是矩形
故添加條件:∠ABC=90°或AC=BD.
故答案為:∠ABC=90°或AC=BD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某數(shù)學(xué)興趣小組對(duì)線段上的動(dòng)點(diǎn)問(wèn)題進(jìn)行探究,已知AB=8.
問(wèn)題思考:
如圖1,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.
(1)在點(diǎn)P運(yùn)動(dòng)時(shí),這兩個(gè)正方形面積之和是定值嗎?如果時(shí)求出;若不是,求出這兩個(gè)正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點(diǎn)A,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),在△APK、△ADK、△DFK中,是否存在兩個(gè)面積始終相等的三角形?請(qǐng)說(shuō)明理由.

問(wèn)題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動(dòng)點(diǎn)P、Q在正方形ABCD的邊上運(yùn)動(dòng),且PQ=8.若點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向D點(diǎn)運(yùn)動(dòng),求點(diǎn)P從A到D的運(yùn)動(dòng)過(guò)程中,PQ的中點(diǎn)O所經(jīng)過(guò)的路徑的長(zhǎng)。
(4)如圖(3),在“問(wèn)題思考”中,若點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BM=1,點(diǎn)G、H分別是邊CD、EF的中點(diǎn).請(qǐng)直接寫出點(diǎn)P從M到N的運(yùn)動(dòng)過(guò)程中,GH的中點(diǎn)O所經(jīng)過(guò)的路徑的長(zhǎng)及OM+OB的最小值.
   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長(zhǎng)BE交CD的延長(zhǎng)線于點(diǎn)F.
(1)證明:FD=AB;
(2)當(dāng)平行四邊形ABCD的面積為8時(shí),求△FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三角形紙片ABC中,AD平分∠BAC,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,展開(kāi)后折痕分別交AB、AC于點(diǎn)E、F,連接DE、DF.求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF。
(1)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)明理由。
(2)在(1)的前提下△ABC滿足什么條件,四邊形AECF是正方形?(直接寫出答案,無(wú)需證明)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知在?ABCD中,AB=5cm,AD=8cm,∠ABC的平分線交AD于點(diǎn)E,交CD的延長(zhǎng)線于點(diǎn)F,則DF=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,E,F(xiàn)是?ABCD的對(duì)角線AC上兩點(diǎn),且AE=CF.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰梯形的對(duì)角線所夾銳角為60°,如圖所示,若梯形上下底之和為2,則該梯形的高為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,AC=BC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( 。

A.矩形       B.菱形         C.正方形      D.梯形

查看答案和解析>>

同步練習(xí)冊(cè)答案