【題目】甲騎自行車從A地到B地,甲出發(fā)1分鐘后乙騎平衡車從A地沿同一條路線追甲,追上甲時(shí),平衡車電量剛好耗盡,乙立即手推平衡車返回A地,速度變?yōu)樵俣鹊?/span>,甲繼續(xù)向B地騎行,結(jié)果甲、乙同時(shí)到達(dá)各自的目的地并停止行進(jìn),整個(gè)過程中,兩人均保持各自的速度勻速行駛,甲、乙兩人相距的路程y(米)與甲出發(fā)的時(shí)間x(分鐘)之間的部分關(guān)系如圖所示,則A,B兩地相距的路程為______米.

【答案】2040

【解析】

根據(jù)題意,可知甲出發(fā)1分鐘后甲、乙兩人相距120米,由此求出甲騎自行車的速度為120/分.再根據(jù)甲出發(fā)3.5分鐘時(shí),兩人相距45米,求出乙的速度,然后求出乙追上甲的時(shí)間,乙返回的時(shí)間,進(jìn)而求出A,B兩地相距的路程.

解:由圖可知,甲騎自行車的速度為120/分.

設(shè)乙的速度為v/分,則有(3.5-1)(v-120=120-45

解得v=150

設(shè)乙用x分鐘追上了甲,則有(150-120x=120

解得x=4

乙追上甲行駛的路程為:150×4=600(米),

乙返回的速度為150×=50(米/分),

乙返回的時(shí)間:=12(分),

AB兩地相距的路程為120×1+4+12=2040(米).

故答案是:2040

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC的直角邊長(zhǎng)為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點(diǎn)C1,C1B1AB于點(diǎn)B1,設(shè)弧BC1C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點(diǎn)C2,C2B2AB于點(diǎn)B2,設(shè)弧B1C2,C2B2B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn)(﹣10),對(duì)稱軸為直線,下列結(jié)論:①;;;④當(dāng)時(shí), 的增大而增大.其中正確的結(jié)論有(  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx+1與拋物線y=x2-4x

(1)求證:直線l與該拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線l與該拋物線兩交點(diǎn)為A,B,O為原點(diǎn),當(dāng)k=-2時(shí),求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=2x+4的圖象與反比例函數(shù)y=k≠0)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,且點(diǎn)B的橫坐標(biāo)為-3

1)求反比例函數(shù)的解析式;

2)連接AO,求AOC的面積;

3)在AOC內(nèi)(不含邊界),整點(diǎn)(橫縱坐標(biāo)都為整數(shù)的點(diǎn))共有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .在同一平面直線坐標(biāo)系中

)若函數(shù)的圖象過點(diǎn),函數(shù)的圖象過點(diǎn),求, 的值.

)若函數(shù)的圖象經(jīng)過的頂點(diǎn).

①求證:

②當(dāng)時(shí),比較, 的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A和點(diǎn)

求反比例函數(shù)和一次函數(shù)的表達(dá)式;

點(diǎn)C是坐標(biāo)平面內(nèi)一點(diǎn),軸,交直線BC于點(diǎn)D,連接,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(-2,0)、(x1,0),且1x12,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a-2b+c=0;②a-b+c0;③2a+c0;④2a-b+10.其中正確結(jié)論的個(gè)數(shù)是( 。﹤(gè).

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案