【題目】在平面直角坐標系xOy中,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A和點

求反比例函數(shù)和一次函數(shù)的表達式;

點C是坐標平面內(nèi)一點,軸,交直線BC于點D,連接,求點C的坐標.

【答案】(1),(2)

【解析】

把點A的坐標代入反比例函數(shù)解析式中,確定出反比例函數(shù)的解析式,再把點B的橫坐標代入反比例函數(shù)解析式中得到點B的坐標,最后把點A和點B的坐標分別代入一次函數(shù)解析式中即可確定出一次函數(shù)解析式;

軸,,且,,即可得到,,,然后在中利用勾股定理列出方程,解方程即可得到點C的坐標.

反比例函數(shù)的圖象過點

,

反比例函數(shù)解析式為,

代入反比例解析式得:,

AB坐標代入得:

解得:,

一次函數(shù)解析式為;

軸,,且,

,,

,

,

中,

,

,

解得,,

點的坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點A恰好落在BC邊的A′處,若AB= ,EFA=60°,則四邊形A′B′EF的周長是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車從A地到B地,甲出發(fā)1分鐘后乙騎平衡車從A地沿同一條路線追甲,追上甲時,平衡車電量剛好耗盡,乙立即手推平衡車返回A地,速度變?yōu)樵俣鹊?/span>,甲繼續(xù)向B地騎行,結果甲、乙同時到達各自的目的地并停止行進,整個過程中,兩人均保持各自的速度勻速行駛,甲、乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的部分關系如圖所示,則A,B兩地相距的路程為______米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點為A(3,2),B(xy)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;

(2)Cy軸上的點,且滿足△ABC的面積為10,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點D從點A出發(fā)以1cm/s的速度運動到點C停止.作DEAC交邊ABBC于點E,以DE為邊向右作正方形DEFG.設點D的運動時間為t(s).

(1)求AC的長.

(2)請用含t的代數(shù)式表示線段DE的長.

(3)當點F在邊BC上時,求t的值.

(4)設正方形DEFGABC重疊部分圖形的面積為S(cm2),當重疊部分圖形為四邊形時,求St之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E,F(xiàn)分別是ABCD的邊BC,AD上的中點,且∠BAC=90°,若∠B=30°,BC=10,則四邊形AECF的面積為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉,使KM邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使MN邊與CD邊重合,完成第二次旋轉……連續(xù)經(jīng)過六次旋轉.在旋轉的過程中,當正方形和正六邊形的邊重合時,點BM間的距離可能是( 。

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的理化實驗操作情況,隨機抽查了40名同學實驗操作的得分.根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:

Ⅰ)扇形 ①的圓心角的大小是   ;

Ⅱ)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

Ⅲ)若該校九年級共有320名學生,估計該校理化實驗操作得滿分(10分)有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙的半徑為5,AB為直徑,C是圓周上一點。

1)求∠ACB的度數(shù)。

2)若ACAO,求陰影部分的面積(用含的代數(shù)式表示).

3)當C點在圓周上移動時,AC、BC、AB三條線段的長度之間存在著恒定不變的關系,請你寫出一種這樣的關系,并說明你的理由.

查看答案和解析>>

同步練習冊答案