【題目】如圖,正方形的邊長為,動(dòng)點(diǎn)從點(diǎn)出發(fā)以的速度沿著邊運(yùn)動(dòng),到達(dá)點(diǎn)停止運(yùn)動(dòng),另一動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),以的速度沿著邊向點(diǎn)運(yùn)動(dòng),到達(dá)點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,的面積為,則關(guān)于的函數(shù)圖象是()

A.B.C.D.

【答案】A

【解析】

分三種情況進(jìn)行討論,當(dāng)0x1時(shí),當(dāng)1x2時(shí),當(dāng)2x3時(shí),分別求得△ANM的面積,列出函數(shù)解析式,根據(jù)函數(shù)圖象進(jìn)行判斷即可.

解:由題可得,BN=x,

當(dāng)0x1時(shí),MBC邊上,BM=3x,AN=3-x,

SANM=ANBM,

y=3-x3x=,C選項(xiàng)錯(cuò)誤;

當(dāng)1x2時(shí),M點(diǎn)在CD邊上, SANM=ANBC,

y=3-x3=,D選項(xiàng)錯(cuò)誤;

當(dāng)2x3時(shí),MAD邊上,AM=9-3x,

SANM=AMAN,

y=9-3x)(3-x=,故B選項(xiàng)錯(cuò)誤;

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的周長為36 cm,對(duì)角線相交于點(diǎn)cm.若點(diǎn)的中點(diǎn),則的周長為(

A.10 cmB.15 cmC.20 cmD.30 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.了解我區(qū)居民知曉“創(chuàng)建文明城區(qū)”的情況,適合全面調(diào)查;

B.甲乙兩人跳高成績的方差分別為,說明乙的距離成績比甲穩(wěn)定;

C.一組數(shù)據(jù)2,2,3,4的眾數(shù)是2,中位數(shù)是2.5;

D.可能性是1%的事件在一次試驗(yàn)中一定不會(huì)發(fā)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別相交于,兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)為4

1)求的值;

2)過點(diǎn)軸,垂足為,點(diǎn)是該反比例函數(shù)的圖象上一點(diǎn),連接,,且

①求點(diǎn)的坐標(biāo);

②求點(diǎn)到直線的距離的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線的對(duì)稱軸為,與軸交于、兩點(diǎn),與軸交于點(diǎn),其中

1)求這條拋物線的函數(shù)表達(dá)式.

2)在對(duì)稱軸上是否存在一點(diǎn),使得的周長最。舸嬖谡(qǐng)求出點(diǎn)的坐標(biāo).若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通信公司實(shí)行的部分套餐資費(fèi)標(biāo)準(zhǔn)如下:

套餐類型

月費(fèi)

(元/月)

套餐內(nèi)包含內(nèi)容

套餐外資費(fèi)

國內(nèi)數(shù)據(jù)流量(MB

國內(nèi)主叫(分鐘)

國內(nèi)流量

國內(nèi)主叫

套餐1

18

100

0

029/MB

019/分鐘

套餐2

28

100

50

套餐3

38

300

50

套餐4

48

500

50

小明每月大約使用國內(nèi)數(shù)據(jù)流量200MB,國內(nèi)主叫200分鐘,若想使每月付費(fèi)最少,則他應(yīng)預(yù)定的套餐是(

A.套餐1B.套餐2C.套餐3D.套餐4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)A和圖形M,若圖形M上存在兩點(diǎn)PQ,使得,則稱點(diǎn)A是圖形M倍增點(diǎn)

1)若圖形M為線段,其中點(diǎn),點(diǎn),則下列三個(gè)點(diǎn),,是線段的倍增點(diǎn)的是_____________;

2)若的半徑為4,直線l,求直線l倍增點(diǎn)的橫坐標(biāo)的取值范圍;

3)設(shè)直線與兩坐標(biāo)軸分別交于G,HOT的半徑為4,圓心Tx軸上的動(dòng)點(diǎn),若線段GH上存在的倍增點(diǎn),直接寫出圓心T的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,,,分別為上、下兩底,的中點(diǎn),,分別為,的中點(diǎn),求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),以為邊在軸上方作正方形,點(diǎn)軸上一動(dòng)點(diǎn),連接,過點(diǎn)的垂線與軸交于點(diǎn)

1)求該拋物線的函數(shù)關(guān)系表達(dá)式;

2)當(dāng)點(diǎn)在線段(點(diǎn)不與重合)上運(yùn)動(dòng)至何處時(shí),線段的長有最大值?并求出這個(gè)最大值;

3)在第四象限的拋物線上任取一點(diǎn),連接.請(qǐng)問:的面積是否存在最大值?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案