【題目】如圖,為美化環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.

(1)用含a的式子表示花圃的面積;

(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬.

【答案】(1)(40﹣2a)(60﹣2a);(2)通道的寬為5米.

【解析】

1)用含a的式子先表示出花圃的長和寬,再利用矩形面積公式列出算式即可;(2)根據(jù)通道所占面積是整個長方形空地面積的,列出方程進行計算即可.

(1)由圖可知,花圃的面積為(40﹣2a)(60﹣2a);

(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,

解得:a1=5,a2=45(舍去).

答:所以通道的寬為5米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年(1)班學(xué)生的體育測試成績?yōu)闃颖,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)

(1)寫出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為 ,C級學(xué)生所在的扇形圓心角的度數(shù)為 ;

(2)該班學(xué)生體育測試成績的中位數(shù)落在等級 內(nèi);

(3)若該校九年級學(xué)生共有500人,請你估計這次考試中A級和B級的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8AD6,將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG

1)如圖1,若在旋轉(zhuǎn)過程中,點E落在對角線AC上,AF,EF分別交DC于點M,N

①求證:MAMC;

②求MN的長;

2)如圖2,在旋轉(zhuǎn)過程中,若直線AE經(jīng)過線段BG的中點P,連接BE,GE,求BEG的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個小正方形,已知下部的小正方形的邊長為am,計算:

1)窗戶的面積;

2)窗框的總長;

3)若a1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計,求制作這種窗戶需要的費用是多少元(π取3.14,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,點EF分別是BA,BC邊的中點,過點AADBCFE的延長線于點D,連接DB,DC

1)求證:四邊形ADFC是平行四邊形;

2)若∠BDC90°,求證:CD平分∠ACB

3)在(2)的條件下,若BDDC6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.

(1)直接寫出拋物線y=-x2+1的勾股點的坐標.

(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數(shù)表達式.

(3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=900,AC=2BC=,點O在邊AB上,以點O為圓心,,OB的長為半徑的圓恰好與AC相切于D,與邊AB相交于點E.

(1)求證:點DAC的中點;

(2)若點F為半圓BEF上的動點,連接BD、BF、DF,填空:

當∠BDF= 時,四邊形BCDF為菱形;

BDF為直角三角形時,BF= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了進一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30,8A型號的自行車與買7B型號的自行車所花費用相同.

(1)A,B兩種型號的自行車的單價分別是多少?

(2)若購買A,B兩種自行車共600,A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.

(1)求直線AB的解析式;

(2)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.

查看答案和解析>>

同步練習冊答案