【題目】已知:二次函數(shù)y=-x2+bx+c的圖象過點(-1,-8),(0,-3).
(1)求此二次函數(shù)的表達式,并用配方法將其化為y=a(x-h)2+k的形式;
(2)用五點法畫出此函數(shù)圖象的示意圖.
【答案】(1)y=-(x-2)2+1.(2)畫圖見解析.
【解析】
試題(1)先將點(﹣1,﹣8),(0,﹣3)代入y=﹣x2+bx+c,列出關于b、c的二元一次方程組,求解得出b、c的值,得到二次函數(shù)的表達式,再用配方法化為頂點式的形式
(2)利用描點法畫出函數(shù)圖象即可.
解:(1)∵二次函數(shù)y=﹣x2+bx+c的圖象過點(﹣1,﹣8),(0,﹣3),
∴,解得,
∴此二次函數(shù)的表達式為y=﹣x2+4x﹣3;
y=﹣x2+4x﹣3=﹣(x﹣2)2+1;
(2)∵y=﹣(x﹣2)2+1,
∴頂點坐標為(2,1),對稱軸方程為x=2.
∵函數(shù)二次函數(shù)y=﹣x2+4x﹣3的開口向下,頂點坐標為(2,1),與x軸的交點為(3,0),(1,0),
∴其圖象為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O是AB上一點, ⊙O與BC相切于點E,交AB于點F,連接AE,若AF=2BF,則∠CAE的度數(shù)是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解初中生畢業(yè)后就讀普通高中或就讀中等職業(yè)技術學校的意向,某校對八、九年級部分學生進行了一次調查,調查結果有三種情況:A.只愿意就讀普通高中;B.只愿意就讀中等職業(yè)技術學校;C.就讀普通高中或中等職業(yè)技術學校都愿意.學校教務處將調查數(shù)據(jù)進行了整理,并繪制了如圖25-3-3所示的尚不完整的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題:
(1)本次活動共調查了多少名學生?
(2)補全圖①,并求出圖②中B區(qū)域的圓心角的度數(shù);
(3)若該校八、九年級的學生共有2800名,請估計該校八、九年級學生中只愿意就讀中等職業(yè)技術學校的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是10m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計).貨車正以每小時40km的速度開往乙地,當行駛1小時時,忽然接到緊急通知:前方連降暴雨,造成水位以每小時0.25m的速度持續(xù)上漲(貨車接到通知時水位在CD處,當水位達到橋拱最高點O時,禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,∠B=∠C,BC=12厘米,點D為AB上一點且BD=8厘米,點P在線段BC上以2厘米/秒的速度由B點向C點運動,設運動時間為t,同時,點Q在線段CA上由C點向A點運動.
(1)用含t的式子表示PC的長為 ;
(2)若點Q的運動速度與點P的運動速度相等,當t=2時,△BPD與△CQP是否全等,請說明理由;
(3)若點Q的運動速度與點P的運動速度不相等,請求出點Q的運動速度是多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,點表示1,現(xiàn)將點沿軸做如下移動,第一次點向左移動3個單位長度到達點,第二次將點向右移動6個單位長度到達點,第三次將點向左移動9個單位長度到達點,按照這種移動規(guī)律移動下去,第次移動到點,如果點與原點的距離不小于20,那么的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD的中點,P是線段BD上的一個動點,則PM+PN的最小值是 ____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com