【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD的中點,P是線段BD上的一個動點,則PM+PN的最小值是 ____

【答案】5

【解析】

試題作M關(guān)于BD的對稱點Q,連接NQ,交BDP,連接MP,此時MP+NP的值最小,連接AC,

四邊形ABCD是菱形,

∴AC⊥BD,∠QBP=∠MBP

QAB上,

∵MQ⊥BD

∴AC∥MQ,

∵MBC中點,

∴QAB中點,

∵NCD中點,四邊形ABCD是菱形,

∴BQ∥CDBQ=CN,

四邊形BQNC是平行四邊形,

∴NQ=BC,

四邊形ABCD是菱形,

∴CP=AC=3,BP=BD=4

Rt△BPC中,由勾股定理得:BC=5

NQ=5,

∴MP+NP=QP+NP=QN=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組 的最小整數(shù)解為a,最大整數(shù)解為b,則ba=( )
A.
B.﹣8
C.
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PQ分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.

連接AQCP交于點M,則在PQ運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);

連接PQ,

秒時,判斷的形狀,并說明理由;

時,則______直接寫出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,長方形紙片ABCD的長AD9cm,寬AB3cm,將其折疊,使點D與點B重合.

求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3E、F分別是ABBC邊上的點,且∠EDF45°,將△DAE繞點D按逆時針方向旋轉(zhuǎn)90°得到△DCM

1)求證:EFMF;(2)當AE1時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1的一張紙條,按圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3,則圖2的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2

1)觀察圖2請你寫出(a+b2、(ab2ab之間的等量關(guān)系是   ;

2)根據(jù)(1)中的結(jié)論,若x+y5,xy,則xy   ;

3)拓展應(yīng)用:若(2019m2+m2020215,求(2019m)(m2020)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎單車上學(xué),當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小明家到學(xué)校的路程是 米.

2)小明在書店停留了 分鐘.

3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.

4)我們認為騎單車的速度超過 300 /分就超過了安全限度.問:在整個上學(xué)途中哪個時間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

運用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b=

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

同步練習(xí)冊答案