【題目】勾股定理是幾何學(xué)中的明珠,充滿著魅力,千百年來(lái),人們對(duì)它趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法:把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c,顯然∠DAB=∠B90°,ACDE

1)請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再通過(guò)探究這三個(gè)圖形面積之間的關(guān)系,證明:勾股定理a2+b2c2;

2)如圖2,鐵路上AB兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),ADAB,BCAB,垂足分別為A、B,AD24千米,BC16千米,在AB上有一個(gè)供應(yīng)站P,且PCPD,求出AP的距離;

3)借助(2)的思考過(guò)程與幾何模型,直接寫(xiě)出代數(shù)式的最小值為   

【答案】1)見(jiàn)解析;(216千米;(320 .

【解析】

1)表示出三個(gè)圖形的面積進(jìn)行加減計(jì)算可證a2+b2c2

2)以(1)中關(guān)于直角三角形的結(jié)論和K型模型建立方程關(guān)系,解方程可得AP的值

3)將條件中的數(shù)表示為直角三角形的直角邊,畫(huà)對(duì)應(yīng)圖形,作軸對(duì)稱圖形,在三點(diǎn)共線時(shí)有最小值.

解:(1)梯形ABCD的面積

四邊形AECD的面積

EBC的面積

∵梯形ABCD的面積=四邊形AECD的面積+EBC的面積

a2+b2c2

2)如圖,當(dāng)DPPC時(shí)

設(shè)APaBP40a

DP2CP2

AP2+AD2BP2+CB2

a2+242=(40a2+162

解得 a16

AP16千米

3)如圖,

AB+BC的最小值即為HB、C三點(diǎn)共線時(shí)

HC20

的最小值為20

故答案為:20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的軌道上有兩個(gè)點(diǎn)甲與乙,開(kāi)始時(shí)甲在A處,乙在C處,它們沿著正方形軌道順時(shí)針同時(shí)出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長(zhǎng)為2 cm,則乙在第2 020次追上甲時(shí)的位置在( 。

A.ABB.BC

C.CDD.AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校要從甲乙兩名射擊運(yùn)動(dòng)員中挑選一人參加全市比賽,在選拔賽中,每人進(jìn)行了5次射擊,甲的成績(jī)(環(huán))為:9.710,9.6,9.8,9.9;乙的成績(jī)的平均數(shù)為9.8,方差為0.032;

1)甲的射擊成績(jī)的平均數(shù)和方差分別是多少?

2)據(jù)估計(jì),如果成績(jī)的平均數(shù)達(dá)到9.8環(huán)就可能奪得金牌,為了奪得金牌,應(yīng)選誰(shuí)參加比賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,頂點(diǎn)A、C分別在x軸、y軸的正半軸上,拋物線L經(jīng)過(guò)0、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)點(diǎn)P的坐標(biāo)為_(kāi)_____

(2)求拋物線L的解析式.

(3)求△OAE與△OCE的面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn),在數(shù)軸上分別表示有理數(shù),,,兩點(diǎn)之間的距離表示為,在數(shù)軸上兩點(diǎn)之間的距離.已知數(shù)軸上,兩點(diǎn)表示數(shù)滿足,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為.

1,兩點(diǎn)之間的距離是.

2之間的距離表示為.

3)數(shù)軸上是否存在點(diǎn),使點(diǎn)到點(diǎn),點(diǎn)的距離之和為?若存在,請(qǐng)求出的值;若不存在,說(shuō)明理由.

4)現(xiàn)在點(diǎn),點(diǎn)分別以單位/秒和單位/秒的速度同時(shí)向右運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)之間的距離為個(gè)單位長(zhǎng)度時(shí),求點(diǎn)所對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意, 補(bǔ)全解題過(guò)程:

如圖,∠AOB=90°,OE平分∠AOCOF平分∠BOC 求∠EOF的度數(shù).

解:因?yàn)?/span>OE平分∠AOC,OF平分∠BOC

所以∠EOC =AOC,∠FOC =________.

所以∠EOF =EOC-________

=(AOC-_______)

= ________

=_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)邊上一點(diǎn),,點(diǎn)的中點(diǎn),過(guò)點(diǎn)作直線分別與,相交于點(diǎn),.,則長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】夏師傅是一名徒步運(yùn)動(dòng)的愛(ài)好者,他用手機(jī)軟件記錄了某個(gè)月(30天)每天徒步的步數(shù)(單位:萬(wàn)步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖.在這組徒步數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

A. 1.2,1.3 B. 1.4,1.3 C. 1.4,1.35 D. 1.3,1.3

查看答案和解析>>

同步練習(xí)冊(cè)答案