【題目】解下列方程或方程組

12x1x+9

2x+52x1

3

4

【答案】1 2 3 4

【解析】

解:(1)對(duì)移項(xiàng)合并2x1x+9即可得到答案;

2)先去括號(hào)得x+52x2,移項(xiàng)合并,再系數(shù)化為1即可得到答案;

3)去分母得205x3x915,移項(xiàng)合并,再系數(shù)化為1即可得到答案;

4)去分母得4015x+35=﹣4x68,移項(xiàng)合并,再系數(shù)化為1即可得到答案.

解:(1)對(duì)2x1x+9移項(xiàng)合并得:x10;

2)去括號(hào)得:x+52x2

移項(xiàng)合并得:﹣x=﹣7,

系數(shù)化為1得:x7;

3)去分母得:205x3x915,

移項(xiàng)合并得:﹣8x=﹣44

系數(shù)化為1得:x5.5;

4)去分母得:4015x+35=﹣4x68

移項(xiàng)合并得:﹣11x=﹣143,

系數(shù)化為1得:x13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2.

(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長(zhǎng)度,則點(diǎn)B所對(duì)應(yīng)的數(shù)是_____.

(2)(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.

(3)(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間AB兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1)有4張桌子,用第一種擺設(shè)方式,可以坐   人;用第二種擺設(shè)方式,可以坐   人;

2)有n張桌子,用第一種擺設(shè)方式可以坐   人;用第二種擺設(shè)方式,可以坐   人(用含有n的代數(shù)式表示);

3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長(zhǎng)方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°,CD=1,求BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:

符號(hào)p分別表示一種運(yùn)算,它對(duì)一些數(shù)的運(yùn)算結(jié)果如下:

0=-1, 1=0 , 2=1 , -3=-4, -4=-5,……

p-1=-2,p=1,p= p2=4, p-3=-6,……

根據(jù)以上運(yùn)算規(guī)律,完成下列問(wèn)題:

1)計(jì)算:-5)×p+2

2)已知x為有理數(shù),且x+ p=2×-4),求x的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B+∠F180°.

請(qǐng)你認(rèn)真完成下面的填空.

證明:∵∠B=∠BGD ( 已知 )

ABCD   

∵∠DGF=∠F;( 已知 )

CDEF   

ABEF   

∴∠B+∠F180°(    ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:,給出定義如下:我們稱使等式成立的一對(duì)有理數(shù)共生有理數(shù)對(duì),記為(,).

(1)通過(guò)計(jì)算判斷數(shù)對(duì)“2,1,“4,是不是共生有理數(shù)對(duì)

(2)(6,a)共生有理數(shù)對(duì),求a的值;

(3)(m,n)共生有理數(shù)對(duì)”,“n,m”___“共生有理數(shù)對(duì)”(不是”),并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)坐標(biāo)為A1-4),B5,-4),C4,-1).

1)在方格紙中畫出ABC;

2)求出ABC的面積;

3)若把ABC向上平移6個(gè)單位長(zhǎng)度,再向左平移7個(gè)單位長(zhǎng)度得到A′B′C′,在圖中畫出A′B′C′,并寫出B′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案