【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)“,”為“共生有理數(shù)對”,記為(,).
(1)通過計算判斷數(shù)對“2,1,“4,”是不是“共生有理數(shù)對”;
(2)若(6,a)是“共生有理數(shù)對”,求a的值;
(3)若(m,n)是“共生有理數(shù)對”,則“n,m”___“共生有理數(shù)對”(填“是”或“不是”),并說明理由;
【答案】(1)(4, )是共生有理數(shù)對;(2)a=;(3)是,理由見解析;
【解析】
(1)根據(jù)“共生有理數(shù)對”的定義即可判斷;
(2)根據(jù)“共生有理數(shù)對”的定義,構(gòu)建方程即可解決問題;
(3)根據(jù)“共生有理數(shù)對”的定義即可判斷;
(1)21=3,2×1+1=1,
∴21≠2×1+1,
∴(2,1)不是“共生有理數(shù)對”;
∵4=3,4×+1=3,
∴(4, )是共生有理數(shù)對;
(2)由題意得:
6a=6a+1,
解得a=;
(3)是,
理由:n(m)=n+m,
n(m)+1=mn+1,
∵(m,n)是“共生有理數(shù)對”,
∴mn=mn+1,
∴n+m=mn+1,
∴(n,m)是“共生有理數(shù)對”;
故答案為:是;
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a-b>0,則a>b;若a-b=0,則a=b;若a-b<0,則a<b.這是利用“作差法”比較兩個數(shù)或兩個代數(shù)式值的大小.
(1)試比較代數(shù)式5m2-4m+2與4m2-4m-7的值之間的大小關(guān)系;
(2)已知A=5m2﹣4(),B=7(m2﹣m)+3,請你運用前面介紹的方法比較代數(shù)式A與B的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)中學生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100為A級,75≤x≤85為B級,60≤x≤75為C級,x<60為D級.現(xiàn)隨機抽取福海中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學生,α= %;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C級對應的圓心角為 度;
(4)若該校共有2000名學生,請你估計該校D級學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題:(1)12﹣18+7﹣15;
(2)×(﹣7)﹣(﹣13)×(﹣);
(3);
(4)(-3)×(-)÷(-1);
(5)-19×8;
(6)﹣12﹣×[(﹣2)3+(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A.C的坐標分別為A(1O,0),C(0,4),點D是OA的中點,點P在BC邊上運動。當△ODP是腰長為5的等腰三角形時,則點P的坐標是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AD=BC,AB=DC,試判斷∠A與∠B的關(guān)系,下面是小穎同學的推導過程,你能說明小穎的每一步的理由嗎?
解:連接BD
在△ABD與△CDB中
AD=BC(______)
AB=CD(______)
BD=DB(______)
∴△ABD≌△CDB(______)
∴∠ADB=∠CBD(______)
∴AD∥BC(______)
∴∠A+∠ABC=180°(______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了考查學生的綜合素質(zhì),九年級畢業(yè)生統(tǒng)一參加理化生實踐操作科目考試。根據(jù)我市實際情況,市教育局決定:理化生實踐考查科目命制24題,分4個試題單元,每個單元內(nèi)含6道理化生實驗操作題。即:物理3題;化學2題;生物1題。小聰與小明是某實驗中學九年級的同班同學,在三月份舉行的理化生考試中,他們同時抽到同一個試題單元,且每個同學都是同一個試題單元里隨機抽取一題。
(1)小聰抽到物理學科科目可能性有多大?
(2)用列表法或樹狀圖,求他倆同時抽到生物的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1.正方形ABCD,過點A作∠EAF=90°,兩邊分別交直線BC于點E,交線段CD于點F,G為AE中點,連接BG
(1)求證:△ABE≌△ADF
(2)如圖2,過點G作BG的垂線交對角線AC于點H,求證:GH=GB;
(3)如圖3,連接HF,若CH=3AH,AD=2,求線段HF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com