【題目】如圖,已知鈍角三角形ABC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)110°得到△ABC′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為_____

【答案】75°

【解析】

先根據(jù)旋轉(zhuǎn)的性質(zhì)得到BAB′=CAC′=110°,AB=AB′,根據(jù)等腰三角形的性質(zhì)易得AB′B=35°,再根據(jù)平行線的性質(zhì)得出C′AB′=AB′B=35°,然后利用CAB′=CAC′﹣C′AB′進行計算即可得出答案.

ABC繞點A按逆時針方向旋轉(zhuǎn)l10°得到AB′C′,

∴∠BAB′=CAC′=110°,AB=AB′,

∴∠AB′B=(180°﹣110°)=35°,

AC′BB′,

∴∠C′AB′=AB′B=35°,

∴∠CAB′=CAC′﹣C′AB′=110°﹣35°=75°.

故答案為:75°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一根長為 a 的竹竿 AB 斜靠在墻上,竹竿 AB 的傾斜角為α,當(dāng)竹竿的頂端 A 下滑到點 A'時,竹竿的另一端 B 向右滑到了點 B',此時傾斜角為β

(1)線段 AA'的長為_____

2)當(dāng)竹竿 AB 滑到 A'B'位置時,AB 的中點 P 滑到了 P',位置,則點 P 所經(jīng)過的路線長為___________(兩小題均用含 a,α,β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點AB,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標(biāo)為m

1)點A的坐標(biāo)為   

2)求這條拋物線所對應(yīng)的函數(shù)表達式.

3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.

4)若EF、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠BAD,ADC=ACB=90°,EAB的中點,ACDE交于點F.

(1)求證:CEAD;

(2)求證:AC2=ABAD;

(3)AC=,AB=8,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P的坐標(biāo)(x,y).

(1)小紅摸出標(biāo)有數(shù)3的小球的概率是多少?.

(2)請你用列表法或畫樹狀圖法表示出由x,y確定的點P(x,y)所有可能的結(jié)果.

(3)求點P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDE,AB=3,BC=2,求BD和∠ABD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CB是O的弦,CD是O的直徑,點A為CD延長線上一點,BC=AB,CAB=30°.

(1)求證:AB是O的切線;(2)若O的半徑為2,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小元設(shè)計的“過圓上一點作圓的切線”的尺規(guī)作圖過程

已知:如圖,OO上一點P.

求作:過點PO的切線.

作法:如圖,

作射線OP

在直線OP外任取一點A,以點A為圓心,AP為半徑作A,與射線OP交于另一點B;

連接并延長BAA交于點C

作直線PC;

則直線PC即為所求.

根據(jù)小元設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明: BCA的直徑,

∴∠BPC=90°(____________)(填推理的依據(jù))

OPPC

OPO的半徑,

PCO的切線(____________)(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若n是一個兩位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學(xué)趣味活動中,每位參加者需從由數(shù)字1,2,3,4,5,6構(gòu)成的所有的“兩位遞增數(shù)”中隨機抽取1個數(shù),且只能抽取一次.

(1)寫出所有個位數(shù)字是5的“兩位遞增數(shù)”;

(2)請用列表法或樹狀圖,求抽取的“兩位遞增數(shù)”的個位數(shù)字與十位數(shù)字之積能被10整除的概率.

查看答案和解析>>

同步練習(xí)冊答案