【題目】如圖,已知CB是O的弦,CD是O的直徑,點(diǎn)A為CD延長(zhǎng)線上一點(diǎn),BC=AB,CAB=30°.

(1)求證:AB是O的切線;(2)若O的半徑為2,求的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2)

解析解:(1)證明:如圖,連接OB,

BC=AB,CAB=30°,∴∠ACB=CAB=30°。

OC=OB,∴∠CBO=ACB=30°。

∴∠AOB=CBO+ACB=60°。

ABO中,CAB=30°,AOB=60°,∴∠ABO=90°,即ABOB。

AB為圓O的切線。
(2)OB=2,BOD=60°,

的長(zhǎng)度=。

(1)連接OB,如圖所示,由BC=AB,利用等邊對(duì)等角得到一對(duì)角相等,由CAB的度數(shù)得出

ACB的度數(shù),再由OC=OB,利用等邊對(duì)等角得到一對(duì)角相等,確定出CBO,外角的性質(zhì)求出AOB的度數(shù),在AOB中,利用三角形的內(nèi)角和定理求出ABO為90°,可得出AB為圓O的切線。

(2)直接應(yīng)用弧長(zhǎng)公式計(jì)算即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(定義)如圖1,A,B為直線l同側(cè)的兩點(diǎn),過(guò)點(diǎn)A作直線l的對(duì)稱點(diǎn),連接B交直線l于點(diǎn)P,連接AP,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線等角點(diǎn)”.

(運(yùn)用)如圖2,在平面直坐標(biāo)系xOy中,已知A(2,),B(-2,-)兩點(diǎn).

(1)C(4,),D(4,),E(4,)三點(diǎn)中,點(diǎn)  是點(diǎn)A,B關(guān)于直線x=4的等角點(diǎn);

(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的等角點(diǎn),其中m>2,APB=α,求證:

(3)若點(diǎn)P是點(diǎn)A,B關(guān)于直線y=ax+b(a≠0)的等角點(diǎn),且點(diǎn)P位于直線AB的右下方,當(dāng)∠APB=60°時(shí),求b的取值范圍(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,∠C=90°,以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交AB、BC于點(diǎn)MN分別以點(diǎn)M、N為圓心,以大于MN的長(zhǎng)度為半徑畫(huà)弧兩弧相交于點(diǎn)P過(guò)點(diǎn)P作線段BD,AC于點(diǎn)D,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,則下列結(jié)論①CD=ED②∠ABD=∠ABC;③BC=BE④AE=BE中,一定正確的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知鈍角三角形ABC,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)110°得到△ABC′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫(huà)出△A1B1C1和△A2B2C2;

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫(xiě)出點(diǎn)A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1P2,請(qǐng)寫(xiě)出點(diǎn)P1P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=-x+2 與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(-2,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向右移動(dòng),當(dāng)⊙P與該直線相交時(shí),滿足橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是( )

A. 3 B. 4 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2

(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求y=-2x2+5x-3函數(shù)的“旋轉(zhuǎn)函數(shù)”.

小明是這樣思考的:由y=-2x2+5x-3函數(shù)可知,a1=-2,b1=5,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.

請(qǐng)參考小明的方法解決下面的問(wèn)題:

(1)寫(xiě)出函數(shù)y=-2x2+5x-3的“旋轉(zhuǎn)函數(shù)”;

(2)若函數(shù)y1=x2 x-n與y2=-x2-mx-2互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2019的值;

(3)已知函數(shù)y=(x-2)(x+3)的圖像與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1、C1,試證明經(jīng)過(guò)點(diǎn)A1、B1、C1的二次函數(shù)與函數(shù)y= (x-2)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司開(kāi)發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷(xiāo)售,售價(jià)為8/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷(xiāo)售量y(件)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中時(shí)間每增加1天,日銷(xiāo)售量減少5件.

1)第17天的日銷(xiāo)售量是   件,日銷(xiāo)售利潤(rùn)是   元.

2)求試銷(xiāo)售期間日銷(xiāo)售利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請(qǐng)你確定燈泡所在的位置,并畫(huà)出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長(zhǎng)AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案