【題目】在平面直角坐標(biāo)系xOy中,對于點和點,給出如下定義:若,則稱點為點的限變點.例如:點的限變點的坐標(biāo)是,點的限變點的坐標(biāo)是.
(1)①點的限變點的坐標(biāo)是___________;
②在點,中有一個點是函數(shù)圖象上某一個點的限變點,這個點是_______________;
(2)若點在函數(shù)的圖象上,其限變點的縱坐標(biāo)的取值范圍是,求的取值范圍;
(3)若點在關(guān)于的二次函數(shù)的圖象上,其限變點的縱坐標(biāo)的取值范圍是或,其中.令,求關(guān)于的函數(shù)解析式及的取值范圍.
【答案】(1)①;② 點B.(2)(3)
【解析】
(1)①根據(jù)限變點的定義可判斷點的限變點的坐標(biāo)是;②求出點,的原始點,代入,適合解析式的是點B的限變點;(2)根據(jù),可得圖象上的點P的限變點必在函數(shù)的圖象上,求出當(dāng)時和當(dāng)時,x的值,再由推出;(3)確定出的頂點坐標(biāo),然后分和兩種情況討論:其中,不合題意,時,求出,所以,然后可確定的取值范圍是≥2.
解:(1)①;
② 點B.
(2)依題意,圖象上的點P的限變點必在函數(shù)的圖象上.
,即當(dāng)時,取最大值2.
當(dāng)時,或.
或(舍).
當(dāng)時, 或.
或.
,
由圖象可知,的取值范圍是.
(3),
頂點坐標(biāo)為.
若,的取值范圍是或,與題意不符.
若,當(dāng)時,的最小值為,即;
當(dāng)時,的值小于,即.
.
關(guān)于的函數(shù)解析式為.
當(dāng)t=1時,取最小值2.
的取值范圍是≥2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AC與BD相交于點O,過點B作BE∥AC,聯(lián)結(jié)OE交BC于點F,點F為BC的中點.
(1)求證:四邊形AOEB是平行四邊形;
(2)如果∠OBC=∠E,求證:BOOC=ABFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD//BC,對角線AC、BD相交于點O ,若,則等于()
A. 1:6B. 1:3C. 1:4D. 1:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參與兩個數(shù)學(xué)活動,再回答問題:
活動:觀察下列兩個兩位數(shù)的積兩個乘數(shù)的十位上的數(shù)都是9,個位上的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,,,.
活動:觀察下列兩個三位數(shù)的積兩個乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個位上的數(shù)組成的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,.
分別寫出在活動、中你所猜想的是哪個算式的積最大?
對于活動,請用二次函數(shù)的知識證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點O是坐標(biāo)原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是一元二次方程的兩個根(OB>OC).
(1)求點A和點B的坐標(biāo).
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設(shè)點P的橫坐標(biāo)為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.當(dāng)0<t<3時,求m關(guān)于t的函數(shù)關(guān)系式.
(3)當(dāng)m=3.5時,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點在上,且>B. Q點在上,且<
C. Q點在上,且>D. Q點在上,且<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c開口向上,與x軸交于點A、B,與y軸交于點C
(1) 如圖1,若A (1,0)、C (0,3)且對稱軸為直線x=2,求拋物線的解析式
(2) 在(1)的條件下,如圖2,作點C關(guān)于拋物線對稱軸的對稱點D,連接AD、BD,在拋物線上是否存在點P,使∠PAD=∠ADB,若存在,求出點P的坐標(biāo),若不存在,請說明理由
(3) 若直線l:y=mx+n與拋物線有兩個交點M、N(M在N的左邊),Q為拋物線上一點(不與M、N重合),過點Q作QH平行于y軸交直線l于點H,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要修一個圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a<0)經(jīng)過點(-1,0),且滿足4a+2b+c>0.以下結(jié)論(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com