【題目】如圖,點(diǎn)OABC內(nèi)任一點(diǎn),點(diǎn)D,E,F(xiàn)分別為OA,OB,OC的中點(diǎn),則圖中相似三角形有( )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根據(jù)點(diǎn)D,E,F分別為OA,OB,OC的中點(diǎn),可得DE是△AOB的中位線,DF是△AOC的中位線,EF是△BOC的中位線,可得DE//AB,DF//AC,EF//BC,進(jìn)而可判定DOE∽△AOD, DOF∽△AOC, EOF∽△BOC,根據(jù)中位線性質(zhì)可得,,

繼而可得可判定DEF∽△ABC.

因?yàn)辄c(diǎn)D,E,F分別為OA,OB,OC的中點(diǎn),

所以DE是△AOB的中位線,DF是△AOC的中位線,EF是△BOC的中位線,

所以DE//AB,DF//AC,EF//BC,

所以DOE∽△AOD, DOF∽△AOC, EOF∽△BOC,

因?yàn)?/span>DEAOB的中位線,DFAOC的中位線,EFBOC的中位線,

所以,,

所以,

所以DEF∽△ABC,

因此有四對相似三角形,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.

1)分別求甲、乙兩種污水處理器的污水處理效率;

2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費(fèi)用分別30元和50元,問該廠每個月(以30天計)需要污水處理費(fèi)多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時,求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分,且.

1)在圖1中,當(dāng)時,求證:;

2)在圖2中,當(dāng)時,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB=AC如圖,D、EBAC的平分線上的兩點(diǎn),連接BDCD、BE、CE;如圖4, DE、FBAC的平分線上的三點(diǎn),連接BD、CDBE、CEBF、CF;如圖5, D、E、F、GBAC的平分線上的四點(diǎn),連接BDCD、BECE、BFCF、BG、CG……依此規(guī)律,第17個圖形中有全等三角形的對數(shù)是(  。

A.17B.54C.153D.171

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個鋁質(zhì)的三角形框架的三邊長分別為24 cm,30 cm,36 cm,要做一個與它相似的鋁質(zhì)三角形的框架,現(xiàn)有長27 cm,45 cm的兩根鋁材,要求以其中的一根為邊,從另一根上截下兩段(允許有余材),則截法有______種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)(x-5)2=16 (直接開平方法) (2)x2+5x=0 (因式分解法)

(3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.

(1)如果方程有兩個相等的實(shí)數(shù)根,試判斷△ABC的形狀并說明理由;

(2)已知a:b:c=3:4:5,求該一元二次方程的根.

查看答案和解析>>

同步練習(xí)冊答案