【題目】(1)如圖1,、是上的兩個點,點在上,且是直角三角形,的半徑為1.
①請在圖1中畫出點的位置;
②當時, ;
(2)如圖2,的半徑為5,、為外固定兩點(、、三點不在同一直線上),且,為上的一個動點(點不在直線上),以和為鄰邊作平行四邊形,求最小值并確定此時點的位置;
(3)如圖3,、是上的兩個點,過點作射線,交于點,若,,點是平面內的一個動點,且,為的中點,在點的運動過程中,求線段長度的最大值與最小值.
【答案】(1)見解析;(2)4.(3)的最小值是,最大值是.
【解析】
(1)①根據圓周角定理作圖;
②根據直角三角形的性質解答;
(2)根據平行四邊形的性質得到BC=AP,根據線段的性質計算;
(3)連接BC,根據勾股定理求出BC,根據直角三角形的性質求出OA,根據三角形中位線定理求出OE,根據三角形的三邊關系解答即可.
解:(1)①如圖:P點為所求;
(2)∵四邊形是平行四邊形,
∴.
∴的最小值即的最小值.
∵當為與的交點時最。
∴的最小值為,
即的最小值為4.
(3)連接,
∵,
∴,
∴是的直徑.
∵點是平面內的一個動點,且,
∴點的運動路徑為以為圓心,以2為半徑的圓,
∵是的直徑,
∴是的中點.
在直角中,.
∵是直角斜邊上的中點,
∴.
∵是的中點,是的中點,
∴.
∴的最小值是,最大值是.
科目:初中數(shù)學 來源: 題型:
【題目】小東從地出發(fā)以某一速度向地走去,同時小明從地出發(fā)以另一速度向地而行,如圖所示,圖中的線段、分別表示小東、小明離地的距離、(千米)與所用時間(小時)的關系.
(1)寫出、與的關系式:_______,_______;
(2)試用文字說明:交點所表示的實際意義.
(3)試求出、兩地之間的距離.
(4)求出小東、小明相距4千米時出發(fā)的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形的四個頂點分別在矩形的各條邊上,,,.有以下四個結論:①;②;③;④矩形的面積是.其中正確的結論為( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,點D、E分別在邊AC、AB上,AD=14,點P是邊BC上一動點,當PD+PE的值最小時,AE=15,則BE為( )
A.30B.29C.28D.27
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國飛人蘇炳添以6秒47獲得2019年國際田聯(lián)伯明翰室內賽男子60米冠軍,蘇炳添奪冠掀起跑步熱潮某校為了解該校八年級男生的短跑水平,全校八年級男生中隨機抽取了部分男生,對他們的短跑水平進行測試,并將測試成績(滿分10分)繪制成如下不完整的統(tǒng)計圖表:
組別 | 成績/分 | 人數(shù)/人 |
A | 5 | 36 |
B | 6 | 32 |
C | 7 | 15 |
D | 8 | 8 |
E | 9 | 5 |
F | 10 | m |
請你根據統(tǒng)計圖表中的信息,解答下列問題:
(1)填空:m=_____,n=_____;
(2)所抽取的八年級男生短跑成績的眾數(shù)是_____分,扇形統(tǒng)計圖中E組的扇形圓心角的度數(shù)為____°;
(3)求所抽取的八年級男生短跑的平均成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗,小紅將這五位名人簡介分別寫在五張完全相同的知識卡片上.
(1)小哲從中隨機抽取一張,求卡片上介紹的人物是唐太宗的概率;
(2)用樹狀圖或列表法求小哲從中隨機抽取兩張,卡片上介紹的人物均是漢朝以后出生的概率.(注:唐太宗、宋太祖、成吉思汗均是漢朝以后出生)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)若點為x軸上一點,是等腰三角形,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC為等腰直角三角形,AB=AC,△ADE為等腰直角三角形,AD=AE,點D在直線BC上,連接CE.
(1)判斷:①CE、CD、BC之間的數(shù)量關系;②CE與BC所在直線之間的位置關系,并說明理由;
(2)若D在CB延長線上,(1)中的結論是否成立?若成立,請直接寫出結論,若不成立,請說明理由;
(3)若D在BC延長線上,(1)中的結論是否成立?若成立,請直接寫出結論,若不成立,請寫出你發(fā)現(xiàn)的結論,并計算:當CE=10cm,CD=2cm時,BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等腰三角形,,,點在邊上,點在邊上(點不與所在線段端點重合),,連接,射線,延長交射線于點,點在直線上,且.
(1)如圖,當時,請直接寫出與的關系:_____;與的位置關系:_____.
(2)當,其他條件不變時,的度數(shù)是多少?(用含的代數(shù)式表示)
(3)若是等邊三角形,,是邊上的三等分點,直線與直線交于點,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com