【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上

1求證:AEF∽△ABC;

2求這個正方形零件的邊長;

3如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?

【答案】1證明見解析;248;32400

【解析】

試題分析:1根據(jù)矩形的對邊平行得到BCEF,利用“平行于三角形的一邊的直線截其他兩邊或其他兩邊的延長線,得到的三角形與原三角形相似”判定即可

2根據(jù)正方形邊的平行關系,得出對應的相似三角形,AEF∽△ABCBFG∽△BAD,從而得出邊長之比,,得到++=1,進而求出正方形的邊長;

3分別討論長方形的長和寬在BC上的情況,再根據(jù)相應得關系式EF BC +EG

試題解析

1四邊形EGFH為矩形,

BCEF,

∴△AEF∽△ABC

2設正方形零件的邊長為x,

在正方形EFGHEFBC∴△AEF∽△ABC,

解得:x=48,

即:正方形零件的邊長為48;

3設長方形的長為x,寬為y

當長方形的長在BC,,,

,

x=60,

長方形的面積最大為2400

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BDBDE點,HBC中點,連接AHBDG點,交EC的延長線于F點,下列5個結論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④SGAD=S四邊形GHCE;⑤CF=BD.正確的有( 。﹤.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題:

1)解方程組:

2)解不等式組(并把解集在數(shù)軸上表示出來).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)已知二次函數(shù)

(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;

(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把自然數(shù)按如圖的次序排列在直角坐標系中,每個點坐標就對應著一個自然數(shù),例如點(0,0)對應的自然數(shù)是1,點(1,2)對應的自然數(shù)是14,那么點(1,4)對應的自然數(shù)是____;點(n,n)對應的自然數(shù)是____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D是直線AB上一點,延長CB到點E,使BEAD,連接DE,DC

1)若點D在線段AB上,且AB6,AD2(如圖①),求證:DEDC;并求出此時CD的長;

2)若點D在線段AB的延長線上,(如圖②),此時是否仍有DEDC?請證明你的結論;

3)在(2)的條件下,連接AE,若,求CDAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地某月120日中午12時的氣溫(單位:℃)如下:

22 31 25 15 18 23 21 20 27 17 20 12 18 21 21 16 20 24 26 19

1)將下列頻數(shù)分布表補充完整:

氣溫分組

劃記

頻數(shù)

12≤x17

3

17≤x22

10

22≤x27

5

27≤x32

2

2)補全頻數(shù)分布直方圖;

3)根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖,分析數(shù)據(jù)的分布情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角頂點P1(33),P2,P3,…均在直線y=﹣x+4上,設△P1OA1,△P2A1A2,△P3A2A3,…的面積分別為S1,S2S3,…依據(jù)圖形所反映的規(guī)律,S2019_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)畫出ABC關于y軸對稱的圖形A1B1C1,并直接寫出C1點坐標;

(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出ABC放大后的圖形A2B2C2,并直接寫出C2點坐標;

(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應點D2的坐標

查看答案和解析>>

同步練習冊答案