【題目】已知ABC是等邊三角形,點D是直線AB上一點,延長CB到點E,使BEAD,連接DE,DC

1)若點D在線段AB上,且AB6,AD2(如圖①),求證:DEDC;并求出此時CD的長;

2)若點D在線段AB的延長線上,(如圖②),此時是否仍有DEDC?請證明你的結論;

3)在(2)的條件下,連接AE,若,求CDAE的值.

【答案】1)見解析,CD2;(2DEDC,理由見解析;(3CDAE

【解析】

1)過點DDFBCAC于點F,作DMBC于點M,由題意可證ADF是等邊三角形,可得AD=AF=DF=2=BE,可得∠DBE=DFC=120°,CF=DB=4,可證DBE≌△CFD,可得DE=CD,由勾股定理可求CD的長;
2)過點DDFBCAC的延長線于點F,由題意可證ADF是等邊三角形,可得AD=DF=AF,由“SAS”可證EBD≌△DFC,可得DE=DC;
3)過點CCHAB于點H,過點AANBC于點N,設AB=2x,AD=3x,由等邊三角形的性質(zhì)可得BC=AC=2x,DF=BE=3x,BD=AD-AB=x,BN=BH=x,AN=x=CH,由勾股定理可求CDAE的長,即可求CDAE的值.

解:(1)過點DDFBCAC于點F,作DMBC于點M,

∵△ABC是等邊三角形

∴∠ABC=∠ACB=∠A60°,ABACBC6,

∴∠DBE120°

DFBC

∴∠ADF=∠ABC60°,∠AFD=∠ACB60°

∴△ADF是等邊三角形,∠DFC120°

ADAFDF2,

BDABAD4ACAFCF

BEADDF2,∠DBE=∠DFC120°,CFDB

∴△DBE≌△CFDSAS

DEDC

又∵DMBC

CMEMECBE+BC)=4

∵在RtDBM中,BD4,∠DBM60°

BM2,DMBM2

CD 2 ;

2DEDC

理由如下:過點DDFBCAC的延長線于點F,

BCDF

∴∠ABC=∠ADF60°,∠ACB=∠AFD60°,

∴△ADF是等邊三角形,

ADDFAF,

ADABAFAC

BDCF,且BEADDF,∠EBD=∠ABC60°=∠AFD

∴△EBD≌△DFCSAS

DECD

3)如圖,過點CCHAB于點H,過點AANBC于點N

∴設AB2x,AD3x,

BCAC2x,DFBE3x,BDADABx,

∵△ABC是等邊三角形,ANBC,CHAB

BNBHxAN xCH

RtDHC中,DC x,

RtAEN中,AE x,

CDAE

故答案為:(1)見解析,CD2;(2DEDC,理由見解析;(3CDAE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, ABCD中,EAD邊上一點,AD=4,CD=3,ED=,A=45.點P,Q分別是BC,CD邊上的動點,且始終保持∠EPQ=45°.將 CPQ沿它的一條邊翻折,當翻折前后兩個三角形組成的四邊形為菱形時,線段BP的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAOD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點C,連接CD,延長AO交⊙O于點E,交CD的延長線于點B

(1)求證:直線CD是⊙O的切線;

(2)如果D點是BC的中點,⊙O的半徑為 3cm,求的長度.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上其余兩個頂點分別在AB,AC上

1求證:AEF∽△ABC;

2求這個正方形零件的邊長;

3如果把它加工成矩形零件如圖2問這個矩形的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣4,5),(﹣13).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

2)請把ABC先向右移動5個單位,再向下移動3個單位得到ABC,在圖中畫出ABC;

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,壩頂寬AD=5米,斜坡AB的坡度i=1:3(指坡面的鉛直高度AE與水平寬度BE的比),斜坡DC的坡度i=1:1.5,已知該攔水壩的高為6米.

(1)求斜坡AB的長;

(2)求攔水壩的橫斷面梯形ABCD的周長.(注意:本題中的計算過程和結果均保留根號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績?nèi)鐖D所示:

1)根據(jù)圖示填寫下表:

班級

中位數(shù)(分)

眾數(shù)(分)

平均數(shù)(分)

愛國班

85

求知班

100

85

2)結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績比較好?

3)已知愛國班復賽成績的方差是70,請求出求知班復賽成績的方差,并說明哪個班成績比較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,垂足為,直線上一動點(不與點重合),在的右側作,使得,連接

1)求證:;

2)當在線段上時

求證:

, ;

3)當CEAB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結果)

查看答案和解析>>

同步練習冊答案