【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( 。
A. ①② B. ②③ C. ③④ D. ①④
【答案】D
【解析】試題解析::①∵拋物線y2=(x-3)2+1開口向上,頂點坐標在x軸的上方,∴無論x取何值,y2的值總是正數(shù),故本結(jié)論正確;
②把A(1,3)代入,拋物線y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=,故本結(jié)論錯誤;
③由兩函數(shù)圖象可知,拋物線y1=a(x+2)2-3解析式為y1=(x+2)2-3,當x=0時,y1=(0+2)2-3=-,y2=(0-3)2+1=,故y2-y1=+=,故本結(jié)論錯誤;
④∵物線y1=a(x+2)2-3與y2=(x-3)2+1交于點A(1,3),
∴y1的對稱軸為x=-2,y2的對稱軸為x=3,
∴B(-5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本結(jié)論正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】對于一次函數(shù),下列結(jié)論正確的是( )
A.函數(shù)值隨自變量的增大而增大
B.函數(shù)的圖象不經(jīng)過第一象限
C.函數(shù)的圖象向下平移4個單位長度得的圖象
D.函數(shù)的圖象與軸的交點坐標是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】建華小區(qū)準備新建50個停車位,以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位需0.5萬元;新建3個地上停車位和2個地下停車位需1.1萬元.
(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?
(2)若該小區(qū)預計投資金額超過10萬元而不超過11萬元,則共有幾種建造方案?
(3)已知每個地上停車位月租金100元,每個地下停車位月租金300元. 在(2)的條件下,新建停車位全部租出.若該小區(qū)將第一個月租金收入中的3600元用于舊車位的維修,其余收入繼續(xù)興建新車位,恰好用完,請直接寫出該小區(qū)選擇的是哪種建造方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,(1)若甲單獨完成需要多少天?(2)從節(jié)省資金的角度考慮,應該選擇哪個工程隊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,在平面直角坐標系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標為(2,0),BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線過點D,B,C三點.
(1)求拋物線的解析式;
(2)求證:ED是⊙P的切線;
(3)若將△ADE繞點D逆時針旋轉(zhuǎn)90°,E點的對應點E′會落在拋物線上嗎?請說明理由;
(4)若點M為此拋物線的頂點,平面上是否存在點N,使得以點B,D,M,N為頂點的四邊形為平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…第n次移動到An.則△OA6A2020的面積是( )
A.505B.504.5C.505.5D.1010
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標軸上,連接AC,拋物線y=x2-4x-2經(jīng)過A,B兩點.
(1)求A點坐標及線段AB的長;
(2)若點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿A-O-C-B的方向向點B移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒.
①當PQ⊥AC時,求t的值;
②當PQ∥AC時,對于拋物線對稱軸上一點H,當點H的縱坐標滿足條件_________時,∠HOQ<∠POQ.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°,且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,此時∠CDB的度數(shù)為________
(2)在圖2中,點P不與點B、M重合,線段CQ的延長線交射線BM于點D,則∠CDB的度數(shù)為(用含α的代數(shù)式表示)________.
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B、M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=DQ,則α的取值范圍是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家廠從A地購買原料,制成食品賣到B地.已知公路運價為1.5元/(公里噸),鐵路運價為1元/(公里噸),這兩次運輸(第一次:A地→食品廠,第二次:食品廠→B地)共支出公路運費15600元,鐵路運費20600元.
問:(1)這家食品廠到A地的距離是多少?
(2)這家食品廠此次買進的原料每噸5000元,賣出的食品每噸10000元,此批食品銷售完后工廠共獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com